108. An Approach by Difference to a Quasi-Linear Parabolic Equation

By Michiaki WATANABE

Faculty of General Education, Niigata University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1983)

1. Introduction. This paper treats the semi-group associated with the Cauchy problem for the equation

(1) $\partial u/\partial t = \Delta \phi(u)$ for t > 0 and $x \in \mathbb{R}^N$ $\left(\Delta = \sum_{i=1}^N \partial^2 / \partial x_i^2 \right)$

through the difference scheme

(2)
$$h^{-1}(u(t+h, x)-u) = \sum_{i=1}^{N} L^{-2} \{ \phi(u(t, x+Le_i)) - 2\phi(u) + \phi(u(t, x-Le_i)) \}$$
$$(e_i = (0, \dots, 0, 1, 0, \dots, 0))$$

where ϕ is a differentiable function on R with $\phi(0)=0$ such that ϕ' is non-negative and bounded on every finite sub-interval of R. The convention

(3) $C_i(t)f(x)=(f(x+te_i)+f(x-te_i))/2$ $(i=1, \dots, N)$ enables us to rewrite (2) as

$$(2)' \qquad h^{-1}(u(t+h,x)-u(t,x)) = \sum_{i=1}^{N} 2L^{-2}(C_i(L)-I)\phi(u(t,x)),$$

and provides a strongly continuous cosine family $C_i(t)$, $t \in R$ in a Banach space $L^1(\mathbb{R}^N)$ with norm $\|\cdot\|_1$ for each fixed *i*. For cosine families in Banach spaces, see [7] for example.

The Cauchy problem for (1) arises in mathematical models of many physical situations. The semi-group approaches to (1) in $L^1(\mathbb{R}^N)$ were made by Benilan, Brezis and Crandall (see [2], [4]). The method is essentially based on their theory on the semi-linear equation $\phi^{-1}(u)$ $-\Delta u = f$ developed in [1]. But, our method is more constructive and provides applications to numerical analysis for (1). Indeed, our main task is to show that

$$\left(I - \lambda \sum_{i=1}^{N} 2L^{-2}(C_i(L) - I)\phi\right)^{-1} \quad \text{converges in } L^1(R^N) \text{ as } L \downarrow 0.$$

2. Main results. Consider the operator C_h defined by

(4)
$$C_h u = u + h \sum_{i=1}^N 2L^{-2}(C_i(L) - I)\phi(u)$$

where h, L>0 and $L^2=2Nh \sup_{|r|\leq m} \phi'(r)$ for an integer m. Let A_i be, for each i, the infinitesimal generator of the strongly continuous cosine family $C_i(t), t \in R$ in $L^1(R^N)$ defined by (3), and let \overline{A} be the smallest closed extension of $\sum_{i=1}^N A_i$ in $L^1(R^N)$. We are concerned with a generalization A_{ϕ} in $L^{1}(\mathbb{R}^{N})$ of $\Delta \phi$ defined by

 $\int A_{\phi} u = \overline{A} \phi(u)$ for $u \in D(A_{\phi})$,

 $\bigcup D(A_{\phi}) = \{ u \in L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N}) : \phi(u) \in D(\overline{A}) \}.$

Theorem. A_{ϕ} is a dissipative operator with domain $D(A_{\phi})$ dense in $L^{1}(\mathbb{R}^{N})$ satisfying the range condition:

(5) $R(I-\lambda A_{\phi})\supset L^{1}(\mathbb{R}^{N})\cap L^{\infty}(\mathbb{R}^{N})$ for $\lambda>0$.

For every $\lambda \! > \! 0$ and $u \in L^1(R^N) \cap L^\infty(R^N)$ with $\|u\|_\infty \leq m$

 $(6) \qquad (I-\lambda h^{-1}(C_h-I))^{-1}u \longrightarrow (I-\lambda A_{\phi})^{-1}u \quad \text{in } L^1(\mathbb{R}^N) \quad \text{as } h \downarrow 0.$

Let $S_{\phi}(t)$, t>0 be the contraction semi-group in $L^{1}(\mathbb{R}^{N})$ generated by A_{ϕ} in the sense of Crandall-Liggett. Then, Brezis-Pazy's convergence theorem [5, Theorem 3.2] is applicable to yield the result that for $u \in L^{1}(\mathbb{R}^{N}) \cap L^{\infty}(\mathbb{R}^{N})$ with $||u||_{\infty} \leq m$

(7) $C_{h}^{[t/h]}u \longrightarrow S_{\phi}(t)u$ in $L^{1}(\mathbb{R}^{N})$ as $h \downarrow 0$ uniformly on every finite sub-interval of $[0, \infty)$. This formula enables us to know some other properties of $S_{\phi}(t)$, t > 0 by means of C_{h} . A similar result to (7) was obtained by [3] with C_{h} otherwise defined.

3. Lemmas. Let X_m be, for an integer m, the totality of $u \in L^1(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ such that $||u||_{\infty} \leq m$.

Lemma 1. For each h>0, C_h maps X_m into itself and satisfies for every $u, v \in X_m$

(i) $||C_h u - C_h v||_1 \leq ||u - v||_1$, (ii) $||C_h u||_{\infty} \leq ||u||_{\infty}$.

Proof. Since $r-2NhL^{-2}\phi(r)$ is non-decreasing in $r \in [-m, m]$ and $|r-s-2NhL^{-2}(\phi(r)-\phi(s))|+2NhL^{-2}|\phi(r)-\phi(s)|=|r-s|$ for $r, s \in [-m, m]$, the lemma is clear from (4). Q.E.D.

Lemma 2. For each h>0, $A_h=h^{-1}(C_h-I)$ satisfies

(i)
$$\operatorname{sgn}(u) \cdot A_h u \leq \sum_{i=1}^N 2L^{-2}(C_i(L) - I) |\phi(u)|,$$

(ii) $\int_{\mathbb{R}^N} \operatorname{sgn}(u) \cdot A_h u f(x) dx \leq \sup_{|r| \leq m} \phi'(r) \cdot \|u\|_{I} \|\Delta f\|_{\infty}$

for every $u \in X_m$, where f is an arbitrary function on \mathbb{R}^N such that $f(x) \geq 0$ for $x \in \mathbb{R}^N$ and $\Delta f \in L^{\infty}(\mathbb{R}^N)$.

Proof. Since $A_h = \sum_{i=1}^{N} 2L^{-2}(C_i(L) - I)\phi(\cdot)$, (i) is clear. Multiplication by f(x) and integration of (i) yield (ii). Q.E.D.

Lemma 3. \overline{A} is the infinitesimal generator of a linear contraction semi-group T(t), t>0 in $L^1(\mathbb{R}^N)$ represented by

 $\begin{array}{ll} (8) & T(t)u(x) = (4\pi t)^{-N/2} \int_{\mathbb{R}^N} e^{-|x-y|^2/(4t)} u(y) dy & \left(|x|^2 = \sum_{i=1}^N x_i^2\right) \\ \text{and satisfies for every } u \in L^1(\mathbb{R}^N) \\ (9) & \left(I - \lambda \sum_{i=1}^N 2t^{-2} (C_i(t) - I)\right)^{-1} u \longrightarrow (I - \lambda \overline{A})^{-1} u & \text{in } L^1(\mathbb{R}^N) & \text{as } t \downarrow 0. \\ Proof. \quad T(t), \ t > 0 \text{ is given by } T(t) = T_1(t) \cdots T_N(t) \text{ with} \\ T_i(t)u = (\pi t)^{-1/2} \int_0^\infty e^{-s^2/(4t)} C_i(s)u \ ds, \quad u \in L^1(\mathbb{R}^N), \quad (i = 1, \cdots, N) \end{array}$

which was suggested by Fattorini [6, p. 92]. Since $C_i(t)$ and $C_j(s)$

commute for any $t, s \in R$ and $i, j=1, \dots, N$, the proof of the lemma is simple and standard. Q.E.D.

From (8) we see that for every t > 0 and $u, v \in X_m$

(10)
$$\int_{\mathbb{R}^N} \operatorname{sgn} (u-v) \cdot t^{-1}(T(t)-I)(\phi(u)-\phi(v)) dx \leq 0.$$

4. Proof of Theorem. Lemma 1 implies that for each h>0, $J_{\lambda}^{h} = (I - \lambda A_{h})^{-1}$ exists and satisfies for every $\lambda > 0$ and a given $u \in X_{m}$ (11) $\|J_{\lambda}^{h}u\|_{1} \leq \|u\|_{1}$,

(12)
$$||J_{i}^{h}u(\cdot+k)-J_{i}^{h}u||_{1} \leq ||u(\cdot+k)-u||_{1}, \quad k \in \mathbb{R}^{N}$$

Replacing f(x) by $\psi(2|x|/\rho-1)(\rho>0)$ and u by $J_{\lambda}^{h}u$ in Lemma 2, (ii), we obtain

(13)
$$\int_{|x|>\rho} |J_{\lambda}^{h}u| dx$$

$$\leq \int_{|x|>\rho/2} |u| dx + 4\lambda \rho^{-2} \sup_{|r|\leq m} \phi'(r) \cdot ||u||_{1} (||\psi''||_{\infty} + (N-1)||\psi'||_{\infty}),$$

where ψ is a very smooth function: $R \rightarrow [0, 1]$ with values 0 for $r \leq 0$ and 1 for $r \geq 1$.

Let $\{h_n\}$ be a sequence vanishing as $n \to \infty$. Then, Lemmas 1 and 2 hold for all C_{h_n} defined by (4) with $h = h_n$, $n = 1, 2, \cdots$. Noting (11)-(13) for $J_{\lambda}^{h_n}$ and using the Fréchet-Kolmogorov theorem, we can prove that there is a sub-sequence denoted again by $\{h_n\}$ such that $J_{\lambda}^{h_n}u$ converges to some u_{λ} in $L^1(\mathbb{R}^N)$. But, the equality

$$\begin{pmatrix} I - \mu \sum_{i=1}^{N} 2L^{-2}(C_i(L) - I) \end{pmatrix}^{-1} \lambda^{-1}(J_{\lambda}^h u - u) \\ = \mu^{-1} \Big\{ \Big(I - \mu \sum_{i=1}^{N} 2L^{-2}(C_i(L) - I) \Big)^{-1} - I \Big\} \phi(J_{\lambda}^h u)$$

together with (9) implies

$$(I-\mu\overline{A})^{-1}\lambda^{-1}(u_{\lambda}-u) = \mu^{-1}((I-\mu\overline{A})^{-1}-I)\phi(u_{\lambda}), \qquad \mu > 0$$

i.e. $u_{\lambda} - \lambda A_{\theta}u_{\lambda} = u$ with $u_{\lambda} \in D(A_{\theta}).$

The dissipativeness of A_{ϕ} follows from (10). The denseness of $D(A_{\phi})$ can be proved by showing that for every $u \in X_m$ there exists a sequence $\{\lambda_n\}$ vanishing as $n \to \infty$ such that $(I - \lambda_n A_{\phi})^{-1}u$ converges to u in $L^1(\mathbb{R}^N)$. We have only to derive (11)-(13) with $J_{\lambda}^n u$ replaced by $(I - \lambda A_{\phi})^{-1}u$ and to use the Fréchet-Kolmogorov theorem again.

References

- [1] Ph. Benilan, H. Brezis, and M. G. Crandall: A semilinear elliptic equation in $L^1(\mathbb{R}^N)$. Ann. Scuola Norm. Pisa, 2, 523-555 (1975).
- [2] Ph. Benilan and M. G. Crandall: The continuous dependence on ϕ of solutions of $u_t \Delta \phi(u) = 0$. MRC Technical Summary Report (1979).
- [3] A. E. Berger, H. Brezis, and C. W. Rogers: A numerical method for solving the problem $u_t \Delta f(u) = 0$. R.A.I.R.O. Analyse numerique/Numerical Analysis, 13, 297-312 (1979).

No. 8]

M. WATANABE

- [4] H. Brezis and M. G. Crandall: Uniqueness of solutions of the initial value problem for $u_t \Delta \phi(u) = 0$. J. Math. Pures Appl., 58, 153-163 (1979).
- [5] H. Brezis and A. Pazy: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Func. Anal., 9, 63-74 (1972).
- [6] H. O. Fattorini: Ordinary differential equations in linear topological spaces, I. J. Differential Equations, 5, 72-105 (1968).
- [7] C. Travis and G. Webb: Second order differential equations in Banach space. Nonlinear Equations in Abstract Spaces (ed. by V. Lakshmikantham). pp. 331-361 (1978).