108. An Approach by Difference to a Quasi-Linear Parabolic Equation

By Michiaki Watanabe
Faculty of General Education, Niigata University
(Communicated by Kôsaku Yosida, M. J. A., Oct. 12, 1983)

1. Introduction. This paper treats the semi-group associated with the Cauchy problem for the equation

$$
\begin{equation*}
\partial u / \partial t=\Delta \phi(u) \quad \text { for } t>0 \quad \text { and } \quad x \in R^{N} \quad\left(\Delta=\sum_{i=1}^{N} \partial^{2} / \partial x_{i}^{2}\right) \tag{1}
\end{equation*}
$$

through the difference scheme

$$
\begin{align*}
& h^{-1}(u(t+h, x)-u) \tag{2}\\
& =\sum_{i=1}^{N} L^{-2}\left\{\phi\left(u\left(t, x+L e_{i}\right)\right)-2 \phi(u)+\phi\left(u\left(t, x-L e_{i}\right)\right)\right\}, \\
& \quad\left(e_{i}=(0, \cdots, 0,1,0, \cdots, 0)\right)
\end{align*}
$$

where ϕ is a differentiable function on R with $\phi(0)=0$ such that ϕ^{\prime} is non-negative and bounded on every finite sub-interval of R. The convention

$$
\begin{equation*}
C_{i}(t) f(x)=\left(f\left(x+t e_{i}\right)+f\left(x-t e_{i}\right)\right) / 2 \quad(i=1, \cdots, N) \tag{3}
\end{equation*}
$$

enables us to rewrite (2) as

$$
\begin{equation*}
h^{-1}(u(t+h, x)-u(t, x))=\sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right) \phi(u(t, x)), \tag{2}
\end{equation*}
$$

and provides a strongly continuous cosine family $C_{i}(t), t \in R$ in a Banach space $L^{1}\left(R^{N}\right)$ with norm $\|\cdot\|_{1}$ for each fixed i. For cosine families in Banach spaces, see [7] for example.

The Cauchy problem for (1) arises in mathematical models of many physical situations. The semi-group approaches to (1) in $L^{1}\left(R^{N}\right)$ were made by Benilan, Brezis and Crandall (see [2], [4]). The method is essentially based on their theory on the semi-linear equation $\phi^{-1}(u)$ $-\Delta u=f$ developed in [1]. But, our method is more constructive and provides applications to numerical analysis for (1). Indeed, our main task is to show that

$$
\left(I-\lambda \sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right) \phi\right)^{-1} \quad \text { converges in } L^{1}\left(R^{N}\right) \text { as } L \downarrow 0
$$

2. Main results. Consider the operator C_{h} defined by

$$
\begin{equation*}
C_{h} u=u+h \sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right) \phi(u), \tag{4}
\end{equation*}
$$

where $h, L>0$ and $L^{2}=2 N h \sup _{|r| \leqslant m} \phi^{\prime}(r)$ for an integer m. Let A_{i} be, for each i, the infinitesimal generator of the strongly continuous cosine family $C_{i}(t), t \in R$ in $L^{1}\left(R^{N}\right)$ defined by (3), and let \bar{A} be the smallest closed extension of $\sum_{i=1}^{N} A_{i}$ in $L^{1}\left(R^{N}\right)$. We are concerned with a gener-
alization A_{ϕ} in $L^{1}\left(R^{N}\right)$ of $\Delta \phi$ defined by

$$
\left\{\begin{array}{l}
A_{\phi} u=\bar{A} \phi(u) \quad \text { for } u \in D\left(A_{\phi}\right), \\
D\left(A_{\phi}\right)=\left\{u \in L^{1}\left(R^{N}\right) \cap L^{\infty}\left(R^{N}\right): \phi(u) \in D(\bar{A})\right\} .
\end{array}\right.
$$

Theorem. A_{ϕ} is a dissipative operator with domain $D\left(A_{\phi}\right)$ dense in $L^{1}\left(R^{N}\right)$ satisfying the range condition:

$$
\begin{equation*}
R\left(I-\lambda A_{\phi}\right) \supset L^{1}\left(R^{N}\right) \cap L^{\infty}\left(R^{N}\right) \quad \text { for } \lambda>0 \tag{5}
\end{equation*}
$$

For every $\lambda>0$ and $u \in L^{1}\left(R^{N}\right) \cap L^{\infty}\left(R^{N}\right)$ with $\|u\|_{\infty} \leqq m$ (6) $\quad\left(I-\lambda h^{-1}\left(C_{h}-I\right)\right)^{-1} u \longrightarrow\left(I-\lambda A_{\phi}\right)^{-1} u \quad$ in $L^{1}\left(R^{N}\right)$ as $h \downarrow 0$.

Let $S_{\phi}(t), t>0$ be the contraction semi-group in $L^{1}\left(R^{N}\right)$ generated by A_{ϕ} in the sense of Crandall-Liggett. Then, Brezis-Pazy's convergence theorem [5, Theorem 3.2] is applicable to yield the result that for $u \in L^{1}\left(R^{N}\right) \cap L^{\infty}\left(R^{N}\right)$ with $\|u\|_{\infty} \leqq m$
$C_{\hbar}^{[t / / \hbar} u \longrightarrow S_{\phi}(t) u \quad$ in $L^{1}\left(R^{N}\right) \quad$ as $h \downarrow 0$
uniformly on every finite sub-interval of $[0, \infty)$. This formula enables us to know some other properties of $S_{\phi}(t), t>0$ by means of C_{h}. A similar result to (7) was obtained by [3] with C_{h} otherwise defined.
3. Lemmas. Let X_{m} be, for an integer m, the totality of $u \in L^{1}\left(R^{N}\right) \cap L^{\infty}\left(R^{N}\right)$ such that $\|u\|_{\infty} \leqq m$.

Lemma 1. For each $h>0, C_{n}$ maps X_{m} into itself and satisfies for every $u, v \in X_{m}$
(i) $\left\|C_{h} u-C_{h} v\right\|_{1} \leqq\|u-v\|_{1}$,
(ii) $\left\|C_{h} u\right\|_{\infty} \leqq\|u\|_{\infty}$.

Proof. Since $r-2 N h L^{-2} \phi(r)$ is non-decreasing in $r \in[-m, m]$ and $\left|r-s-2 N h L^{-2}(\phi(r)-\phi(s))\right|+2 N h L^{-2}|\phi(r)-\phi(s)|=|r-s|$ for $r, s \in[-m$, m], the lemma is clear from (4).
Q.E.D.

Lemma 2. For each $h>0, A_{h}=h^{-1}\left(C_{h}-I\right)$ satisfies
(i) $\operatorname{sgn}(u) \cdot A_{h} u \leqq \sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right)|\phi(u)|$,
(ii) $\int_{R^{N}} \operatorname{sgn}(u) \cdot A_{h} u f(x) d x \leqq \sup _{|r| \leq m} \phi^{\prime}(r) \cdot\|u\|_{1}\|\Delta f\|_{\infty}$ for every $u \in X_{m}$, where f is an arbitrary function on R^{N} such that $f(x) \geqq 0$ for $x \in R^{N}$ and $\Delta f \in L^{\infty}\left(R^{N}\right)$.

Proof. Since $A_{h}=\sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right) \phi(\cdot)$, (i) is clear. Multiplication by $f(x)$ and integration of (i) yield (ii).
Q.E.D.

Lemma 3. \bar{A} is the infinitesimal generator of a linear contraction semi-group $T(t), t>0$ in $L^{1}\left(R^{N}\right)$ represented by

$$
\begin{equation*}
T(t) u(x)=(4 \pi t)^{-N / 2} \int_{R^{N}} e^{-|x-y|^{2} /(4 t)} u(y) d y \quad\left(|x|^{2}=\sum_{i=1}^{N} x_{i}^{2}\right) \tag{8}
\end{equation*}
$$

and satisfies for every $u \in L^{1}\left(R^{N}\right)$

$$
\begin{equation*}
\left(I-\lambda \sum_{i=1}^{N} 2 t^{-2}\left(C_{i}(t)-I\right)\right)^{-1} u \longrightarrow(I-\lambda \bar{A})^{-1} u \quad \text { in } L^{1}\left(R^{N}\right) \quad \text { as } t \downarrow 0 \tag{9}
\end{equation*}
$$

Proof. $\quad T(t), t>0$ is given by $T(t)=T_{1}(t) \cdots T_{N}(t)$ with

$$
T_{i}(t) u=(\pi t)^{-1 / 2} \int_{0}^{\infty} e^{-s^{2} /(4 t)} C_{i}(s) u d s, \quad u \in L^{1}\left(R^{N}\right), \quad(i=1, \cdots, N)
$$

which was suggested by Fattorini [6, p. 92]. Since $C_{i}(t)$ and $C_{j}(s)$
commute for any $t, s \in R$ and $i, j=1, \cdots, N$, the proof of the lemma is simple and standard.
Q.E.D.

From (8) we see that for every $t>0$ and $u, v \in X_{m}$

$$
\begin{equation*}
\int_{R^{N}} \operatorname{sgn}(u-v) \cdot t^{-1}(T(t)-I)(\phi(u)-\phi(v)) d x \leqq 0 \tag{10}
\end{equation*}
$$

4. Proof of Theorem. Lemma 1 implies that for each $h>0$, $J_{\lambda}^{h}=\left(I-\lambda A_{h}\right)^{-1}$ exists and satisfies for every $\lambda>0$ and a given $u \in X_{m}$

$$
\begin{equation*}
\left\|J_{\lambda}^{h} u\right\|_{1} \leqq\|u\|_{1}, \tag{11}
\end{equation*}
$$

Replacing $f(x)$ by $\psi(2|x| / \rho-1)(\rho>0)$ and u by $J_{\lambda}^{h} u$ in Lemma 2, (ii), we obtain

$$
\begin{align*}
& \int_{|x|>\rho}\left|J_{\lambda}^{h} u\right| d x \tag{13}\\
& \quad \leqq \int_{|x|>\rho / 2}|u| d x+4 \lambda \rho^{-2} \sup _{|r| \leqq m} \phi^{\prime}(r) \cdot\|u\|_{1}\left(\left\|\psi^{\prime \prime}\right\|_{\infty}+(N-1)\left\|\psi^{\prime}\right\|_{\infty}\right)
\end{align*}
$$

where ψ is a very smooth function: $R \rightarrow[0,1]$ with values 0 for $r \leqq 0$ and 1 for $r \geqq 1$.

Let $\left\{h_{n}\right\}$ be a sequence vanishing as $n \rightarrow \infty$. Then, Lemmas 1 and 2 hold for all $C_{h_{n}}$ defined by (4) with $h=h_{n}, n=1,2, \cdots$. Noting (11)-(13) for $J_{\lambda}^{h_{n}}$ and using the Fréchet-Kolmogorov theorem, we can prove that there is a sub-sequence denoted again by $\left\{h_{n}\right\}$ such that $J_{\lambda}^{h_{n}} u$ converges to some u_{λ} in $L^{1}\left(R^{N}\right)$. But, the equality

$$
\begin{aligned}
& \left(I-\mu \sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right)\right)^{-1} \lambda^{-1}\left(J_{\lambda}^{h} u-u\right) \\
& \quad=\mu^{-1}\left\{\left(I-\mu \sum_{i=1}^{N} 2 L^{-2}\left(C_{i}(L)-I\right)\right)^{-1}-I\right\} \phi\left(J_{\lambda}^{h} u\right)
\end{aligned}
$$

together with (9) implies

$$
\begin{aligned}
& (I-\mu \bar{A})^{-1} \lambda^{-1}\left(u_{2}-u\right)=\mu^{-1}\left((I-\mu \bar{A})^{-1}-I\right) \phi\left(u_{\lambda}\right), \quad \mu>0 \\
& \text { i.e. } \quad u_{\lambda}-\lambda A_{\phi} u_{\lambda}=u \quad \text { with } \quad u_{\lambda} \in D\left(A_{\phi}\right) .
\end{aligned}
$$

The dissipativeness of A_{ϕ} follows from (10). The denseness of $D\left(A_{\phi}\right)$ can be proved by showing that for every $u \in X_{m}$ there exists a sequence $\left\{\lambda_{n}\right\}$ vanishing as $n \rightarrow \infty$ such that $\left(I-\lambda_{n} A_{\phi}\right)^{-1} u$ converges to u in $L^{1}\left(R^{N}\right)$. We have only to derive (11)-(13) with $J_{\lambda}^{h} u$ replaced by $\left(I-\lambda A_{\phi}\right)^{-1} u$ and to use the Fréchet-Kolmogorov theorem again.

References

[1] Ph. Benilan, H. Brezis, and M. G. Crandall: A semilinear elliptic equation in $L^{1}\left(R^{N}\right)$. Ann. Scuola Norm. Pisa, 2, 523-555 (1975).
[2] Ph. Benilan and M. G. Crandall: The continuous dependence on ϕ of solutions of $u_{t}-\Delta \phi(u)=0$. MRC Technical Summary Report (1979).
[3] A. E. Berger, H. Brezis, and C. W. Rogers: A numerical method for solving the problem $u_{t}-\Delta f(u)=0$. R.A.I.R.O. Analyse numerique/Numerical Analysis, 13, 297-312 (1979).
[4] H. Brezis and M. G. Crandall: Uniqueness of solutions of the initial value problem for $u_{t}-\Delta \phi(u)=0$. J. Math. Pures Appl., 58, 153-163 (1979).
[5] H. Brezis and A. Pazy: Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Func. Anal., 9, 63-74 (1972).
[6] H. O. Fattorini: Ordinary differential equations in linear topological spaces, I. J. Differential Equations, 5, 72-105 (1968).
[7] C. Travis and G. Webb: Second order differential equations in Banach space. Nonlinear Equations in Abstract Spaces (ed. by V. Lakshmikantham). pp. 331-361 (1978).

