107. A Truncated Cube Functional Equation

By Shigeru Haruki
Okayama University of Science
(Communicated by Kôsaku Yosida, m. J. A., Oct. 12, 1983)

§ 1. Introduction. The purpose of this note is to announce some equivalence relations among certain particular polyhedral mean value type functional equations without any regularity assumptions.

Let $(G,+)$ be an Abelian group in which it is possible to divide by 2 , and let F be a field of characteristic zero. For a function $f: G \times G$ $\times G \rightarrow F$ we define the shift operators X_{1}^{t}, X_{2}^{t}, and X_{3}^{t} by $\left(X_{1}^{t} f\right)(x, y, z)$ $=f(x+t, y, z),\left(X_{2}^{t} f\right)(x, y, z)=f(x, y+t, z)$, and $\left(X_{3}^{t} f\right)(x, y, z)=f(x, y$, $z+t$) for all $x, y, z, t \in G$. In particular $1=X_{1}^{0}=X_{2}^{0}=X_{3}^{0}$ denotes the identity operator. We note that the ring of linear transformation generated by this family of transformations is commutative and distributive.
L. Etigson [2] and L. Sweet [5] considered the equivalence of the following cube and octahedron mean value functional equations, which are the most fundamental particular polyhedral mean value type functional equations, under the assumption $f: G \times G \times G \rightarrow F$:
$(C(t) f)(x, y, z)=8 f(x, y, z)$,
(1.2)
$(O(t) f)(x, y, z)=6 f(x, y, z)$
where the operators $C(t)$ and $O(t)$ are defined by

$$
C(t)=\prod_{i=1}^{3}\left(X_{i}^{t}+X_{i}^{-t}\right) \quad \text { and } \quad O(t)=\sum_{i=1}^{3}\left(X_{i}^{t}+X_{i}^{-t}\right)
$$

In this note we will consider the equivalence of (1.1) and the polyhedral mean value functional equation

$$
\begin{equation*}
(T(t) f)(x, y, z)=12 f(x, y, z) \tag{1.3}
\end{equation*}
$$

where the operator $T(t)$ is defined by

$$
T(t)=\left(X_{1}^{t}+X_{1}^{-t}\right)\left(X_{2}^{t}+X_{2}^{-t}\right)+\left(X_{2}^{t}+X_{2}^{-t}\right)\left(X_{3}^{t}+X_{3}^{-t}\right)+\left(X_{3}^{t}+X_{3}^{-t}\right)\left(X_{1}^{t}+X_{1}^{-t}\right)
$$

By a geometric interpretation we call equation (1.3) a truncated cube mean value functional equation.
§ 2. Equivalence of (1.1) and (1.3). Theorem 1. If a function $f: G \times G \times G \rightarrow F$ satisfies equation (1.1) for all $x, y, z, t \in G$, then also (1.3) for all $x, y, z, t \in G$ and conversely so that (1.1) and (1.3) are equivalent.

By using the operator notations in § 1 we have $C(2 t)=\Pi\left(X_{i}^{2 t}\right.$ $+X_{i}^{-2 t}$) and readily obtain
(i) $C(t)^{2}=(C(t))(C(t))=C(2 t)+2 T(2 t)+4 O(2 t)+8$,
(ii) $O(t)^{2}=(O(t))(O(t))=O(2 t)+2 T(t)+6$,
(iii) $\quad T(t)^{2}=(T(t))(T(t))=T(2 t)+4 O(2 t)+2 O(t) C(t)+12$.

Proof of Theorem 1. We briefly write (1.3) as
(2.4)

$$
T(t)=12 .
$$

Squaring the operators on both sides of (2.4) yields $T(2 t)+4 O(2 t)$ $+2 O(t) C(t)+12=144$ which, with (2.4), implies
(2.5)

$$
O(t) C(t)=60-2 O(2 t)
$$

It follows from (i), (ii), and (2.4) that
(2.6) $\quad C(t)^{2}=C(2 t)+4 O(2 t)+32, \quad O(t)^{2}=O(2 t)+30$.

Now, square both sides of (2.5) and then use (2.6) to obtain ($O(2 t)$ $+30)(C(2 t)+4 O(2 t)+32)=3600-240 O(2 t)+4 O(2 t)^{2}$ or, in expanded form, $O(2 t) C(2 t)+4 O(2 t)^{2}+32 O(2 t)+30 C(2 t)+120 O(2 t)+960=3600$ $-240 O(2 t)+4 O(2 t)^{2}$, which, with (2.5) implies $60-2 O(4 t)+392 O(2 t)$ $+30 C(2 t)=2640, \quad 30 C(2 t)+392 O(2 t)=2 O(4 t)+2580, \quad$ and $\quad 15 C(2 t)$ $+196 O(2 t)=O(4 t)+1290$. By replacing $2 t$ by t we have (2.7)

$$
15 C(t)+196 O(t)=O(2 t)+1290
$$

Squaring both sides of (2.7) yields $225 C(2 t)+9000(2 t)+7200$ $+5880 O(t) C(t)+38416 O(2 t)+1152480=O(4 t)+30+2580 O(2 t)+1664100$ which, with (2.5), implies $225 C(2 t)+9000(2 t)+7200+352800$ $-11760 O(2 t)+38416 O(2 t)+1152480=O(4 t)+30+2580 O(2 t)+1664100$ and $-O(4 t)+225 C(2 t)+24976 O(2 t)=151650$. By replacing $2 t$ by t this equation becomes
(2.8) $\quad 225 C(t)+24976 O(t)=O(2 t)+151650$.

Next, multiply both sides of (2.7) by 15 to obtain
(2.9) $\quad 225 C(t)+2940 O(t)=15 O(2 t)+19350$.

Subtract (2.9) from (2.8) to obtain $14 O(2 t)+22036 O(t)=132300$ and
(2.10)
$O(2 t)+1574 O(t)=9450$.
Thus (2.4) implies (2.10). Write (2.10) as
(2.11)

$$
1574 O(t)=9450-O(2 t)
$$

and then square both sides of (2.11) to obtain $2477476 O(2 t)+74324280$ $=89302500-189000(2 t)+O(4 t)+30$ and $O(4 t)-2496376 O(2 t)$ $=-14978250$ which, with $2 t$ replaced by t, implies (2.12) $\quad O(2 t)-2496376 O(t)=-14978250$.

Subtract (2.10) from (2.12) to obtain $-2497950 O(t)=-14987700$ and $O(t)=6$. Now it follows from (2.5) and $O(2 t)=6$ that $6 C(t)=60-12$ and $C(t)=8$, that is, (1.1). Thus (1.3) implies (1.1).

Conversely, squaring both sides of $C(t)=8$, we have $C(2 t)+2 T(2 t)$ $+4 O(2 t)+8=64$, or, with $2 t$ replaced by t,

$$
\begin{equation*}
C(t)+2 T(t)+4 O(t)+8=64 \tag{2.13}
\end{equation*}
$$

On the other hand, by a result of [1] or [2], $C(t)=8$ implies $O(t)=6$. Hence, it follows from (2.13), $C(t)=8$, and $O(t)=6$ that $8+2 T(t)+24+8$ $=64$ and $T(t)=12$, that is, (2.4). Thus (1.1) and (1.3) are equivalent.
$\S 3$. Consequences of Theorem 1. Let R be the set of all real
numbers. Then by combining results of H. Haruki [3] and M. A. McKiernan [6] (see also [4]) with $G=F=R$ we obtain the following two corollaries.

Corollary 1. If $f: R \times R \times R \rightarrow R$ is bounded on a set of positive Lebesgue measure and is a solution of (1.3), then $f \in C^{\infty}$.

Corollary 2. The only solution $f: R \times R \times R \rightarrow R$ of (1.3) which is bounded on a set of positive Lebesgue measure is given by

$$
\begin{equation*}
f(x, y, z)=\sum_{i, j, k=0}^{5} \alpha_{i j k}\left(\partial^{i+j+k} P(x, y, z)\right) /\left(\partial x^{i} \partial y^{j} \partial z^{k}\right) \tag{3.14}
\end{equation*}
$$

where $\{\alpha\}_{i j k}$ are real constants and

$$
P(x, y, z)=x y z\left(x^{2}-y^{2}\right)\left(y^{2}-z^{2}\right)\left(z^{2}-x^{2}\right) .
$$

(3.14) is also the only continuous solution.
§4. A related equation. Theorem 2. If a function $f: R \times R$ $\times R \rightarrow R$ satisfies equation (1.1) for all $x, y, z, t \in G$, then also

$$
\begin{equation*}
((C(t)+O(t)+T(t)) f)(x, y, z)=26 f(x, y, z) \tag{4.15}
\end{equation*}
$$

for all $x, y, z, t \in G$ and conversely so that (1.1) and (4.15) are equivalent.

A proof of Theorem 2 is similar to that of Theorem 1. We omit it.
§5. Conclusion. Theorem 3. If $f: R \times R \times R \rightarrow R$ satisfies the cube mean value functional equation (1.1) for all $x, y, z, t \in G$, then also each one of (1.2), (1.3), and (4.15) for all $x, y, z, t \in G$ and conversely so that they are equivalent to each other.

References

[1] J. Aczél, H. Haruki, M. A. McKiernan, and G. N. Sakovič: Aequationes Math., 1, 37-53 (1968).
[2] L. Etigson: ibid., 10, 50-56 (1974).
[3] H. Haruki: ibid., 3, 156-159 (1969).
[4] S. Haruki: Utilitas Math., 4, 3-7 (1973).
[5] L. Sweet: Aequationes Math., 22, 29-38 (1981).
[6] M. A. McKiernan: ibid., 4, 31-36 (1968).

