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§1. Introduction. The purpose of this note is to announce some

equivalence relations among certain particular polyhedral mean value
type functional equations without any regularity assumptions.

Let (G, +) be an Abelian group in which it is possible to divide by
2, and let F be a field of characteristic zero. For a function f: GXG
X G—F we define the shift operators X!, Xi, and X} by (X!f)(«, ¥, 2)
=flx+t,v,2), (Xif) (@, y,2)=rf(x,y+t,2), and (Xif)(z,y,2) = f(x,v¥,
z+1t) for all #,y,2,teG. In particular 1=X}=X)=X? denotes the
identity operator. We note that the ring of linear transformation
generated by this family of transformations is commutative and dis-
tributive.

L. Etigson [2] and L. Sweet [5] considered the equivalence of the
following cube and octahedron mean value functional equations, which
are the most fundamental particular polyhedral mean value type
functional equations, under the assumption f: GXGXG—F:

1.1 CON, y,2)=8f(x, Y, 2),
where the operators C(¢) and O(t) are defined by

CO=]] Xi+X:) and O@B=3; X+ X7,

In this note we will consider the equivalence of (1.1) and the poly-
hedral mean value functional equation
where the operator T'(¢) is defined by

T(t) =X+ X)X+ X579+ (X + X7 )X+ X7 )+ (X5 4+ Xy )X+ X79).

By a geometric interpretation we call equation (1.3) a truncated cube
mean value functional equation.

§2. Equivalence of (1.1) and (1.3). Theorem 1. If a function
1 GXGXG—F satisfies equation (1.1) for all z, y, 2, t € G, then also
1.8) for all z,y, 2, te G and conversely so that (1.1) and (1.3) are
equivalent.

By using the operator notations in §1 we have C(@2¢) =]] (X¥
+X;%*) and readily obtain

(i) CEAy=CHNCEN=C2H+2T21)+40@2tH)+8,

(ii) O@y=0W)O0@)=02t)+2T(t)+6,
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(i) T@EP=T )T @)=T2t)+40@2t)+20@)C(t)+12.

Proof of Theorem 1. We briefly write (1.3) as
2.4 T@)=12.
Squaring the operators on both sides of (2.4) yields T(2t)+40(2¢t)
4+-20()C(t)+12=144 which, with (2.4), implies

2.5) O@)C(t)=60—20(2t).
It follows from (i), (ii), and (2.4) that
(2.6) Ct):=C(2t)+402t)+32, O(t)*=0(2t)+30.

Now, square both sides of (2.5) and then use (2.6) to obtain (O(2¢)
+30)(C(2t) +40(2t) + 32) = 3600—2400(2t) + 40(2t)* or, in expanded
form, O@t)C(2t) + 40(2t)* + 320(2t) 4 30C(2t) + 1200(2t)+ 960 = 3600
—2400(2t)+40(2t)?, which, with (2.5) implies 60—20(4t)+3920(2t)
+30C (2t) = 2640, 30C (2t) 4+ 3920 (2t) = 20 (4t) + 2580, and 15C (2¢t)
+1960(2t)=0(4t)+1290. By replacing 2t by ¢ we have

2.7 15C(t) +1960(t) = 0(2t) +1290.

Squaring both sides of (2.7) yields 225C(2t) + 9000(2t) + 7200
+58800(t)C(t)+384160(2t) + 1152480 = O(4t) +30+25800(2¢) + 1664100
which, with (2.5), implies 225C(2t) + 9000 (2¢t) + 7200 -+ 352800
—117600(2t) -+ 384160(2t) + 1152480 = O(4t) + 30 + 25800(2t) + 1664100
and —O0(4t)+225C(2t)4-249760(2t)=151650. By replacing 2¢ by ¢ this
equation becomes

2.8) 225C(t)+249760(t) = O(2t) +151650.

Next, multiply both sides of (2.7) by 15 to obtain

2.9) 225C(t)+29400(1) =150(2¢) +19350.

Subtract (2.9) from (2.8) to obtain 140(2t)1-220360(t) =132300 and
2.10) 02t)+15740(t) =9450.

Thus (2.4) implies (2.10). Write (2.10) as

2.11) 15740(t) =9450 — O(2t)

and then square both sides of (2.11) to obtain 24774760(2t)+ 74324280
= 89302500 — 189000(2t) + O(4t) + 30 and O(4t) — 24963760 (2t)
= —14978250 which, with 2¢ replaced by ¢, implies
2.12) 0(2t) —24963760(t) = —14978250.
Subtract (2.10) from (2.12) to obtain —24979500(t)= —14987700 and
O(t)=6. Now it follows from (2.5) and O(2t)=6 that 6C({)=60—12
and C(f)=8, that is, (1.1). Thus (1.3) implies (1.1).
Conversely, squaring both sides of C(t)=8, we have C(2t)+2T(2¢)
+40(2t)+8=64, or, with 2¢ replaced by ¢,
(2.13) C@t)+2T(t)+40(t)+8=64.
On the other hand, by a result of [1] or [2], C(¢)=8 implies O(f)=6.
Hence, it follows from (2.13), C(t)=8, and O(t) =6 that 8+2T(¢)+24+8
=64 and T(t)=12, that is, (2.4). Thus (1.1) and (1.3) are equivalent.
§3. Consequences of Theorem 1. Let R be the set of all real
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numbers. Then by combining results of H. Haruki [3] and M. A.
McKiernan [6] (see also [4]) with G=F =R we obtain the following
two corollaries.

Corollary 1. If f: RXRXR—R is bounded on a set of positive
Lebesgue measure and is a solution of (1.3), then fe C~.

Corollary 2. The only solution f: RXRXR—R of (1.3) which is
bounded on a set of positive Lebesgue measure is given by

(3'14) f(x’ Y, Z)= . jﬁ . atjk(a““kp(x, Y, z))/(ax’ayfaz’“)
yJr k=

where {a},,, are real constants and
P(z, y, 2) =2yz(@’— y)(y* —2)) (" —27).
(8.14) is also the only continuous solution.
§ 4. A related equation. Theorem 2. If a function f: RXR
X R—R satisfies equation (1.1) for all z, ¥y, 2z, t € G, then also

4.15) (CHO+O0BOV+TENS)(z, y, 2)=261(x, Y, 2)
for all z, 9,2 teG and conversely so that (1.1) and (4.15) are
equivalent.

A proof of Theorem 2 is similar to that of Theorem 1. We omit it.

§5. Conclusion. Theorem 3. If f: RXRXR—R satisfies the
cube mean value functional equation (1.1) for all , y, 2, te G, then
also each one of (1.2), (1.3), and (4.15) for all z,y, 2, t € G and con-
versely so that they are equivalent to each other.
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