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4, The Order of Unstable Manifold o some
Algebraic Plane Transformation
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(Communicated by K.Ssaku YOSIDA, M. J.A., Jan. 12, 1983)

We consider the transformation

( 1 ) f(x, y)--(y+cx(1-x), x), cO.
(See [1] and [2].)
The entire solution of the functional equation"

g(0) =0,
( 2 ) g(,t) f(g(t)) (,> 0),

g(t)--(a(t), (t)),
is called unstable manifold of the transo.rmation f through origin.

The order p of g is defined by the following ormula
p limsup log log M(r)/log r

where M(r) is the maximum value of a(t)l on t=r.
Proposition 1. M(r)=-a(-r).
Proof. From (2) a satisfies

( 3 ) a(t) a(t) + ca(t)(1-a(t)).
Since a= atn, a,=l, we deduce that

2 c2 1 0 (0) and an
2-c-1, "=

From the above identity, we obtain by induction an-0 and an0.
Consequently, we get

M(r)=
Theorem 1. p= log 2/log].
Proof. Since
-(-r)=-(-r/Z)-c(-r/)+c(-r/)>c(-r/),

we get plog2/log. Conversely, we can derive the next inequality.
a(- r) -a(-r/2)-ca(-r/2)+ ca(-r/2)

< a( r/)+k( r/)
<k(a(--r/2)+a(-r/)+ +a(-r/2-))

<kna(-r/),
where n is approximated by log r/2 log 2, and k and k do not depend
on r. This, implies.

plog 2/log 2.
Combining the above relations, we get the consequence.
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