43. Zeta Functions in Several Variables Associated with Prehomogeneous Vector Spaces. III*

Eisenstein Series for Indefinite Quadratic Forms

By Fumihiro Sato
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. A., March 12, 1981)

In the present note, by applying the general theory developed in [2], we prove functional equations of Eisenstein series for indefinite quadratic forms.
6. Let Y be an $n+1$ by $n+1$ rational non-degenerate symmetric matrix of signature $(p, q)(p+q=n+1)$. Denote by $d_{i}(A)$ the determinant of the upper left i by i block of a matrix A. Let Γ_{∞} be the group of upper triangular integral matrices of size $n+1$ with diagonal entries 1. For an $n+1$ tuple $\varepsilon=\left(\varepsilon_{1}, \cdots, \varepsilon_{n+1}\right)$ of ± 1, we write $\operatorname{sgn} \varepsilon$ $=(i, n-i+1)$ if exactly i of ε_{j} 's are equal to 1 . For any $\varepsilon \in\{ \pm 1\}^{n+1}$ with $\operatorname{sgn} \varepsilon=(p, q)$, the Eisenstein series for Y is defined by

$$
\left.E(Y, \varepsilon ; s)=\sum_{U} \prod_{i=1}^{n} \mid d_{i}{ }^{t} U Y U\right)\left.\right|^{-s_{i}}\left(s=\left(s_{1}, \cdots, s_{n}\right) \in \boldsymbol{C}^{n}\right)
$$

where U runs through a set of all representatives of the double cosets belonging to $S O(Y)_{Z} \backslash S L(n+1)_{Z} / \Gamma_{\infty}$ such that

$$
\left.\left.d_{i}{ }^{t} U Y U\right) / \mid d_{i}{ }^{t} U Y U\right) \mid=\varepsilon_{1} \cdots \varepsilon_{i}(1 \leqq i \leqq n+1) .
$$

Let $z=\left(z_{1}, \cdots, z_{n+1}\right)$ be a variable which is connected to s by $s_{i}=z_{i+1}$ $-z_{i}+1 / 2(1 \leqq i \leqq n)$. Set

$$
\Lambda(Y, \varepsilon ; z)=\sum_{1 \leqq j<i \leqq n+1} \eta\left(2 z_{i}-2 z_{j}+1\right)|\operatorname{det} Y|^{z_{n+1}} E(Y, \varepsilon ; s)
$$

where $\eta(z)=\pi^{-z / 2} \Gamma(z / 2) \zeta(z)(\zeta(z)$: the Riemann zeta function).
Theorem 6. (1) The series $E(Y, \varepsilon ; s)\left(\varepsilon \in\{ \pm 1\}^{n+1}, \operatorname{sgn} \varepsilon=(p, q)\right)$ are absolutely convergent for $\operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n}>1$.
(2) The functions $E(Y, \varepsilon ; s)$ multiplied by

$$
\prod_{1 \leqq i \leqq j \leqq n}\left(s_{i}+s_{i+1}+\cdots+s_{j}-\frac{j-i}{2}-1\right)^{2} \zeta\left(2\left(s_{i}+s_{i+1}+\cdots+s_{j}\right)-j+i\right)
$$

have analytic continuations to entire functions of s in \boldsymbol{C}^{n}.
(3) For any permutation σ in $n+1$ letters and for any ε, $\eta \in\{ \pm 1\}^{n+1}$ such that $\operatorname{sgn} \varepsilon=\operatorname{sgn} \eta=(p, q)$, there exists $A^{o}(\varepsilon, \eta ; z) a$ rational function of trigonometric functions of z satisfying

$$
\Lambda(Y, \varepsilon ; \sigma z)=\sum_{\eta} A^{\sigma}(\varepsilon, \eta ; z) \Lambda(Y, \eta ; z)
$$

[^0]where $\sigma z=\left(z_{\sigma(1)}, \cdots, z_{\sigma(n+1)}\right)$.
(4) For the cyclic permutation $\sigma=(k+1,1,2, \cdots, k)(1 \leqq k \leqq n)$,
\[

A^{\sigma}(\varepsilon, \eta ; z)=\left\{$$
\begin{array}{l}
\prod_{i=1}^{k} \frac{\cos \frac{\pi}{4}\left\{2\left(1+\varepsilon_{i+1} \eta_{i}\right)\left(z_{k+1}-z_{i}+\frac{1}{2}\right)+\varepsilon_{i+1}\left(\sum_{j=i+2}^{k+1} \varepsilon_{j}-\sum_{j=i}^{k+1} \eta_{j}\right)\right\}}{\sin \pi\left(z_{k+1}-z_{i}+1 / 2\right)} \\
\begin{array}{l}
\text { if } \operatorname{sgn} \varepsilon=\operatorname{sgn} \eta \text { and } \varepsilon_{i}=\eta_{i}(k+2 \leqq i \leqq n+1), \\
\text { otherwise. }
\end{array}
\end{array}
$$\right.
\]

Remarks. (1) If Y is positive definite, the series $E(Y, \varepsilon ; s)$ $\left(\varepsilon=(1,1, \cdots, 1)\right.$) is the Eisenstein series of $S L(n+1)_{Z}$ (Selberg's zeta function) and our result is consistent with the results in A. Selberg [3] and H. Maass [1].
(2) In [3], A. Selberg suggested that one can associate with a rational indefinite quadratic form a system of Dirichlet series with functional equations similar to those of the original Eisenstein series.
7. The Eisenstein series $E(Y, \varepsilon ; s)$ is a typical example of zeta functions associated with prehomogeneous vector spaces. Put G $=S O(Y) \times G L(n) \times G L(n-1) \times \cdots \times G L(1)$ and $V_{k}=M(k+1, k ; C)(1 \leqq k$ $\leqq n)$. We define a rational representation ρ_{k} of G on V_{k} by setting

$$
\rho_{k}(g) x_{k}=g_{k+1} x_{k} g_{k}^{-1} \quad\left(g=\left(g_{n+1}, g_{n}, \cdots, g_{1}\right) \in G, x_{k} \in V_{k}\right) .
$$

Set $\rho=\oplus_{k=1}^{n} \rho_{k}$ and $V=\oplus_{k=1}^{n} V_{k}$.
Lemma 7. (i) The triple (G, ρ, V) is a p.v. with the singular set

$$
S=\bigcup_{i=1}^{n}\left\{x \in V ; P_{i}(x)=0\right\}
$$

where $P_{i}(x)=\operatorname{det}\left\{{ }^{t}\left(x_{n} x_{n-1} \cdots x_{i}\right) Y\left(x_{n} x_{n-1} \cdots x_{i}\right)\right\} \quad\left(1 \leqq i \leqq n, x=\left(x_{n}, x_{n-1}\right.\right.$, $\left.\left.\cdots, x_{1}\right) \in V\right)$.
(ii) For any non-empty subset I of $\{1,2, \cdots, n\}$, put $V_{I}=\oplus_{k \in I} V_{k}$. Then V_{I} is a Q-regular subspace of (G, ρ, V) with respect to a natural Q-structure.
(iii) $\quad X_{\rho}(G)$ is the group generated by $\operatorname{det} g_{1}^{2}, \cdots, \operatorname{det} g_{n}^{2}$ and the group H introduced in [2. II] is given by

$$
H=S O(Y) \times S L(n) \times \cdots \times S L(2) \times\{1\}
$$

Moreover the condition (I) holds for (G, ρ, V).
(iv) The group H_{x} is trivial for any $x \in V-S$.

Notice that every Q-irreducible component of S is absolutely irreducible.

Denote by ($G, \rho^{(I)}, V^{(I)}$) the partially dual p.v. of (G, ρ, V) with respect to V_{I} and by $S^{(I)}$ its singular set. If $I=\phi$, we consider ($G, \rho^{(\phi)}$, $\left.V^{(\phi)}\right)$ as (G, ρ, V). By an easy computation, we have $\delta=(1,1, \cdots, 1)$ for ($G, \rho^{(I)}, V^{(I)}$).

Hence, by Lemma 7, Theorem 5 of [2] and Remark (3) to Theorem 5 , the zeta functions associated with ($G, \rho^{(I)}, V^{(I)}$) are absolutely con-
vergent for $\operatorname{Re} s_{1}, \cdots, \operatorname{Re} s_{n}>1$. Now we relate $E(Y, \varepsilon ; s)$ to the zeta functions for the lattice $L=M(n+1, n ; Z) \oplus M(n, n-1 ; Z) \oplus \cdots \oplus M(2$, 1; Z). We take $S O(Y)_{R} \times G L(n)_{R}^{+} \times \cdots \times G L(1)_{R}^{+}$as G_{R}^{+}in [2.I] where $G L(k)_{R}^{+}=\left\{g_{k} \in G L(k)_{R} ; \operatorname{det} g_{k}>0\right\}$. It is easy to see that the G_{R}^{+}-orbits in $V_{R}^{(I)}-S_{R}^{(I)}$ are indexed by $\left\{\varepsilon \in\{ \pm 1\}^{n+1} ; \operatorname{sgn} \varepsilon=(p, q)\right\}$.

Lemma 8. The zeta functions $\xi_{\varepsilon}^{(I)}(L ; s)$ associated with ($G, \rho^{(I)}$, $V^{(I)}$) and L are given by the following formula:
$\xi_{\varepsilon}^{(I)}(L ; s)= \begin{cases}|\operatorname{det} Y|^{n / 2} \prod_{1 \leq i \leq j \leq n} \zeta\left(2\left(s_{i}+\cdots+s_{j}\right)-j+i\right) E(Y, \varepsilon ; s) & \text { if } n \notin I, \\ |\operatorname{det} Y|^{s_{1}+\cdots+s_{n}-n / 2} \\ \quad \prod_{1 \leq i \leq j \leq n} & \prod_{i}\left(2\left(s_{i}+\cdots+s_{j}\right)-j+i\right) E(Y, \varepsilon ; \hat{s}) \quad \text { if } n \in I\end{cases}$ where $\hat{s}=\left(s_{n}, s_{n-1}, \cdots, s_{1}\right)$.

The lemma implies the first part of Theorem 6. The functional equations satisfied by $E(Y, \varepsilon ; s)$ are reduced to the functional equations combining $\xi_{s}^{(I)}(L ; s)$ with $\xi_{s}^{(\phi)}(L ; s)$ given by Theorem 2 of [2]. In particular, applying Theorem 2 to the \boldsymbol{Q}-regular subspace V_{k}, we get the functional equation of $E(Y, \varepsilon ; s)$ for $\sigma=(k+1,1,2, \cdots, k)$. It follows from Theorem 3 of [2] that $E(Y, \varepsilon ; s)$ have analytic continuations to meromorphic functions of s in C^{n}. But the proof of Theorem 6 (2) requires more effort. The detailed proof will appear elsewhere.

References

[1] H. Maass: Siegel's modular forms and Dirichlet series. Lect. note in Math., vol. 216, Springer (1971).
[2] F. Sato: Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations. Proc. Japan Acad., 57A, 7479 (1981) ; ditto. II. A convergence criterion. ibid., 57A, 126-127 (1981).
[3] A. Selberg: Discontinuous groups and harmonic analysis. Proc. Int. Congr. of Math., Stockholm (1962).

[^0]: *) Supported by the Grant in Aid for Scientific Research of the Ministry of Education No. 574050.

