43. Zeta Functions in Several Variables Associated III*[,] with Prehomogeneous Vector Spaces.

Eisenstein Series for Indefinite Quadratic Forms

By Fumihiro SATO

Department of Mathematics, Rikkyo University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1981)

In the present note, by applying the general theory developed in [2], we prove functional equations of Eisenstein series for indefinite quadratic forms.

6. Let Y be an n+1 by n+1 rational non-degenerate symmetric matrix of signature (p, q) (p+q=n+1). Denote by $d_i(A)$ the determinant of the upper left i by i block of a matrix A. Let Γ_{∞} be the group of upper triangular integral matrices of size n+1 with diagonal entries 1. For an n+1 tuple $\varepsilon = (\varepsilon_1, \dots, \varepsilon_{n+1})$ of ± 1 , we write sgn ε =(i, n-i+1) if exactly i of ε_j 's are equal to 1. For any $\varepsilon \in \{\pm 1\}^{n+1}$ with sgn $\varepsilon = (p, q)$, the Eisenstein series for Y is defined by

$$E(Y, \varepsilon; s) = \sum_{U} \prod_{i=1}^{n} |d_i(^{\iota}UYU)|^{-s_i} (s = (s_1, \cdots, s_n) \in \mathbf{C}^n)$$

where U runs through a set of all representatives of the double cosets belonging to $SO(Y)_{\mathbb{Z}} \setminus SL(n+1)_{\mathbb{Z}} / \Gamma_{\infty}$ such that

 $|d_i(UYU)/|d_i(UYU)| = \varepsilon_1 \cdots \varepsilon_i \ (1 \leq i \leq n+1).$

Let $z=(z_1, \dots, z_{n+1})$ be a variable which is connected to s by $s_i=z_{i+1}$ $-z_i + 1/2$ (1 $\le i \le n$). Set

$$\Lambda(Y,\varepsilon;z) = \sum_{1 \le j < i \le n+1} \eta(2z_i - 2z_j + 1) |\det Y|^{z_{n+1}} E(Y,\varepsilon;s)$$

where $\eta(z) = \pi^{-z/2} \Gamma(z/2) \zeta(z)$ ($\zeta(z)$: the Riemann zeta function).

Theorem 6. (1) The series $E(Y, \varepsilon; s)(\varepsilon \in \{\pm 1\}^{n+1}, \operatorname{sgn} \varepsilon = (p, q))$ are absolutely convergent for $\operatorname{Re} s_1, \cdots, \operatorname{Re} s_n > 1$.

(2) The functions $E(Y, \varepsilon; s)$ multiplied by

$$\prod_{1 \le i \le j \le n} \left(s_i + s_{i+1} + \dots + s_j - \frac{j-i}{2} - 1 \right)^2 \zeta(2(s_i + s_{i+1} + \dots + s_j) - j + i)$$

have analytic continuations to entire functions of s in C^n .

(3) For any permutation σ in n+1 letters and for any ε , $\eta \in \{\pm 1\}^{n+1}$ such that $\operatorname{sgn} \varepsilon = \operatorname{sgn} \eta = (p, q)$, there exists $A^{\circ}(\varepsilon, \eta; z)$ a rational function of trigonometric functions of z satisfying $\Lambda(Y$

$$I(Y, \varepsilon; \sigma z) = \sum_{\eta} A^{\sigma}(\varepsilon, \eta; z) \Lambda(Y, \eta; z)$$

Supported by the Grant in Aid for Scientific Research of the Ministry of Education No. 574050.

where $\sigma z = (z_{\sigma(1)}, \cdots, z_{\sigma(n+1)}).$

$$(4) \quad For the cyclic permutation \ \sigma = (k+1, 1, 2, \dots, k) \ (1 \leq k \leq n),$$

$$A^{\sigma}(\varepsilon, \eta; z) = \begin{cases} \prod_{i=1}^{k} \frac{\cos \frac{\pi}{4} \left\{ 2(1+\varepsilon_{i+1}\eta_i) \left(z_{k+1}-z_i+\frac{1}{2} \right) + \varepsilon_{i+1} \left(\sum_{j=i+2}^{k+1} \varepsilon_j - \sum_{j=i}^{k+1} \eta_j \right) \right\}}{\sin \pi (z_{k+1}-z_i+1/2)} \\ if \ \operatorname{sgn} \varepsilon = \operatorname{sgn} \eta \ and \ \varepsilon_i = \eta_i \ (k+2 \leq i \leq n+1), \\ 0 \quad otherwise. \end{cases}$$

Remarks. (1) If Y is positive definite, the series $E(Y, \varepsilon; s)$ ($\varepsilon = (1, 1, \dots, 1)$) is the Eisenstein series of $SL(n+1)_Z$ (Selberg's zeta function) and our result is consistent with the results in A. Selberg [3] and H. Maass [1].

(2) In [3], A. Selberg suggested that one can associate with a rational indefinite quadratic form a system of Dirichlet series with functional equations similar to those of the original Eisenstein series.

7. The Eisenstein series $E(Y, \varepsilon; s)$ is a typical example of zeta functions associated with prehomogeneous vector spaces. Put $G = SO(Y) \times GL(n) \times GL(n-1) \times \cdots \times GL(1)$ and $V_k = M(k+1, k; C)$ $(1 \leq k \leq n)$. We define a rational representation ρ_k of G on V_k by setting

 $\rho_k(g)x_k = g_{k+1}x_kg_k^{-1} \quad (g = (g_{n+1}, g_n, \cdots, g_1) \in G, x_k \in V_k).$

Set $\rho = \bigoplus_{k=1}^{n} \rho_k$ and $V = \bigoplus_{k=1}^{n} V_k$.

Lemma 7. (i) The triple (G, ρ, V) is a p.v. with the singular set

$$S = \bigcup_{i=1}^{n} \{x \in V; P_i(x) = 0\}$$

where $P_i(x) = \det \{ {}^{\iota}(x_n x_{n-1} \cdots x_i) Y(x_n x_{n-1} \cdots x_i) \}$ $(1 \leq i \leq n, x = (x_n, x_{n-1}, \dots, x_1) \in V).$

(ii) For any non-empty subset I of $\{1, 2, \dots, n\}$, put $V_I = \bigoplus_{k \in I} V_k$. Then V_I is a **Q**-regular subspace of (G, ρ, V) with respect to a natural **Q**-structure.

(iii) $X_{\rho}(G)$ is the group generated by det $g_1^2, \dots, \det g_n^2$ and the group H introduced in [2. II] is given by

 $H = SO(Y) \times SL(n) \times \cdots \times SL(2) \times \{1\}.$

Moreover the condition (I) holds for (G, ρ, V) .

(iv) The group H_x is trivial for any $x \in V-S$.

Notice that every Q-irreducible component of S is absolutely irreducible.

Denote by $(G, \rho^{(I)}, V^{(I)})$ the partially dual p.v. of (G, ρ, V) with respect to V_I and by $S^{(I)}$ its singular set. If $I = \phi$, we consider $(G, \rho^{(\phi)}, V^{(\phi)})$ as (G, ρ, V) . By an easy computation, we have $\delta = (1, 1, \dots, 1)$ for $(G, \rho^{(I)}, V^{(I)})$.

Hence, by Lemma 7, Theorem 5 of [2] and Remark (3) to Theorem 5, the zeta functions associated with $(G, \rho^{(I)}, V^{(I)})$ are absolutely con-

192

vergent for $\operatorname{Re} s_1, \dots, \operatorname{Re} s_n > 1$. Now we relate $E(Y, \varepsilon; s)$ to the zeta functions for the lattice $L = M(n+1, n; Z) \oplus M(n, n-1; Z) \oplus \dots \oplus M(2, 1; Z)$. We take $SO(Y)_R \times GL(n)_R^+ \times \dots \times GL(1)_R^+$ as G_R^+ in [2.1] where $GL(k)_R^+ = \{g_k \in GL(k)_R; \det g_k > 0\}$. It is easy to see that the G_R^+ -orbits in $V_R^{(1)} - S_R^{(2)}$ are indexed by $\{\varepsilon \in \{\pm 1\}^{n+1}; \operatorname{sgn} \varepsilon = (p, q)\}$.

Lemma 8. The zeta functions $\xi_{*}^{(I)}(L;s)$ associated with $(G, \rho^{(I)}, V^{(I)})$ and L are given by the following formula:

$$\xi_{\ast}^{(I)}(L;s) = \begin{cases} |\det Y|^{n/2} \prod_{1 \le i \le j \le n} \zeta(2(s_i + \dots + s_j) - j + i)E(Y, \varepsilon; s) & \text{if } n \notin I, \\ |\det Y|^{s_1 + \dots + s_n - n/2} \\ \times \prod_{1 \le i \le j \le n} \zeta(2(s_i + \dots + s_j) - j + i)E(Y, \varepsilon; \hat{s}) & \text{if } n \in I \\ where \ \hat{s} = (s_n, s_{n-1}, \dots, s_1). \end{cases}$$

The lemma implies the first part of Theorem 6. The functional equations satisfied by $E(Y, \varepsilon; s)$ are reduced to the functional equations combining $\xi_i^{(I)}(L; s)$ with $\xi_i^{(\phi)}(L; s)$ given by Theorem 2 of [2]. In particular, applying Theorem 2 to the **Q**-regular subspace V_k , we get the functional equation of $E(Y, \varepsilon; s)$ for $\sigma = (k+1, 1, 2, \dots, k)$. It follows from Theorem 3 of [2] that $E(Y, \varepsilon; s)$ have analytic continuations to meromorphic functions of s in C^n . But the proof of Theorem 6 (2) requires more effort. The detailed proof will appear elsewhere.

References

- H. Maass: Siegel's modular forms and Dirichlet series. Lect. note in Math., vol. 216, Springer (1971).
- [2] F. Sato: Zeta functions in several variables associated with prehomogeneous vector spaces. I. Functional equations. Proc. Japan Acad., 57A, 74-79 (1981); ditto. II. A convergence criterion. ibid., 57A, 126-127 (1981).
- [3] A. Selberg: Discontinuous groups and harmonic analysis. Proc. Int. Congr. of Math., Stockholm (1962).