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34. An Asymptotic Property of a Certain Brownian
Motion Expectation for Large Time

. - A
By Hiroyuki OKURA
Department of Mathematics, Osaka University

(Communicated by Kosaku Yosipa, M. J. A., March 12, 1981)

1. Let (X(t): t=0, P) be the Brownian motion in R? starting
from X(0)=0. We give an asymptotic formula for the quantity

(1) I=Itt; 9=E|exp{—» [ {1-exp(~ o(X@-ns)}ay}|
R 0

as t—oo, where E' denotes the expectation with respect to P, ¢ a non-
negative Borel function on R? and v>0 a constant. Asymptotic be-
havior of J(f) has been investigated in connection with the study of
the spectral distributions of the Schriodinger operators —1/24+ q(x)
with random potentials of the form q(x)=> p(x—¢,), where {¢,} is the
support of the Poisson random measure with intensity »>0 (see [2]-
[7n.

Donsker and Varadhan [2] proved that if o(x)=o0(1/|x|**»)(|z|— o)

and J o(x)dx >0, then

(2) lim ¢-4@+» log J(£) = — k()
t—oo
exists and
(3) k(y)=,,2/<d+z)d_'*'a(zzl/d)d/mm,
2

where 1, is the smallest eigenvalue for —1/24 in a sphere of unit
volume with zero boundary condition. On the other hand, Pastur [7]
proved that if ¢(x) ~K/|x|**?(|x|—>o0), where K>0 and 0<8<2, then

(4) lim t-%<*® log J(t)= — (v, B, K)
t—o
exists and
(5) £y, B, K)= Kd/(d+‘9)F<———‘B-—),Q y
B v ivp)

where £, is the volume of a sphere of unit radius. The following
theorem covers the critical case of o(x) ~ K/|x|***(|x|—00).

Theorem 1. Let (X(t),t=0) be the d-dimensional Browmnian
motion with X(0)=0. Suppose ¢ is a non-negative bounded Borel
function of R* such that ¢(x)~K/|x|***(x|—>0), where K>0. Define
J@) by ). Then for any v>0
(6) lim t-4/¢+? Jog J(t)= — C(v, K)

t—oo

extists and C(v, K)=infreq, [I(f)+O(f)], where
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7 =2 rv7rde,
2 JRre

o] i, L

Ix_y]d+2

and F,={f € F; f has a bounded support and I(f)<oo}.

Here & denotes the set of all probability density functions on R*
and V denotes the usual gradient vector in the distribution sense.

Remarks. (i) Theorem 1 is still valid if K/|x|*** is replaced
by any w(x)>0 which is homogeneous of degree —(d+2), i.e., w(ix)
=w(x)/2°*%, 2>0, and continuous in z=0.

(ii) Furthermore, if the Brownian motion is replaced by a d-
dimensional symmetric stable process of index « (0<a<(2), then
Theorem 1 holds with d+2 and I(f) replaced by d+a and I‘“(f)

=27 f dx I |V f(w+y)— f(x)n(dy), respectively, where n(dy) is the

Lévy measure of the stable process.

We next give some information as to how C(v, K) in Theorem 1
depends on K and v and how it is related to k(v) in (3) and «(v, 2, K)
in (5). In the following we write £(v, K) for «(v, 2, K).

Theorem 2. (i) C(v, K) is strictly increasing, concave and con-
tinuous both in K>0 and in v>0.

(ii) C(v, K)>max {k(), £ (v, K)}.

(i) CQ, K) | k@) as K | 0 and C(y, K) ~£(v, K) as K 1 co.

(iv) CG, K)~k@) asv | 0and Clv, K)~«k(v, K) as v 1 oo.

The proof of Theorem 1 will be given in §§2 and 3 and the proof
of Theorem 2 will be given in §4.

2. Proof of Theorem 1 (upper bound). In this section we prove
(8) lim ¢t-#“*» log J(t; 9) < —C(v, K).

t—oo

Let = px¢p (convolution), where pe F. We first prove
(9) lim t-#@+» log J(t; ¥) < —C(v, K).

t—o0

To prove (9) we will use the argument similar to that of the upper
bound in [2]. In particular, we appeal to the Donsker-Varadhan
large deviation theorem for the Brownian motion on a torus ([1]).
Let M >0 be given. Let T be a d-dimensional torus of size M and let
G={Mnyy ---,Mn,): n,e Z,i=1, - - -, d} so that T=R?/G. We think
of T as [0, M]°C R? with the sides identified. Let &, be the set of all
probability density functions on T, but periodically extended to the
whole space R?. For ge &, let

@M(g)=»f {1—exp<——KI -_Q—(x)d—x)}dy and 1M(g)=lj PV g [de

T Ra | —y|**? 2J)r

if the right hand side makes sense, otherwise I”(g)= oo.
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Lemma 2.1. Let y(2)= p*go(ﬂ(:)‘:‘de p(@—oe)dy with ped.
Then
(10) lim ¢-4“+» Jog J(t; ¥) < — inf [I"(9)+P*(9)].

oo 9eFy
Proof. For anye>0definek, € F, by k(0)=3,.5 p.(x+7), z € R,
where p,(x)=e¢"%p(¢'x). Moreover, for any trajectory w=z(-) on

T and any >0 define g.(o, -) € F, by g.(o, y)=f-1ﬁ k. (2(0)—m)do,

Yy € R%, where e(r)=7""%, Let X(t), t=0 be a trajectory in R* with
X(0)=0. Define, for each s>0, a new trajectory X°(-) by X*(¢)
=8"'X(s’%). Let n: R°>T be the canonical projection. Set c=<(f)
={¥“*? and s=s(r)=7"4(=t"“*?), By change of variables and using
the argument in [2, p. 562], we have for the given = px¢

S
<exp{—10 (g0, N}Ho=r(X*(-))),

where ?¥(g)=v L {1—exp<~—jm go,(x——y)g(x)dx)}dy, geF, and o, (2)

=@/ (r'%). Since the laws of X*(-) and X(-) are identical, we have
an J(t; ) S Elexp{—70(9.(x(X(-)), -N}] (c=1*»),

Since ¢.(2)—>K/|z|*** as t—o0, we can check by using Fatou’s lemma
twice that if g7, g € &, satisfy g*—¢g in L(T, dx) as — oo, then lim @¥(gr)
=0"(g). Thus it follows from Corollary to Theorem 5.1 of [1] that
(12) lim L log Elexp{—7®Y(9.(x(X(-)), - N} < — inf [I"(9)+D"(g)].

T T geSFy
Combining (12) with (11), we have (10). Q.E.D.
To establish (9) we have only to prove the following lemma since
M >0 is arbitrary.
Lemma 2.2. sup inf [[¥(¢9)+0*(¢9)]=C(v, K).

M>09eF iy

This is the analogue of Lemma 3.5 of [2] and can be proved simi-
larly with a slight modification. We omit the proof.

The following lemma reduces (8) to (9).

Lemma 2.3. For each 0<a<<1 there is a ¢(x)=0 with the prop-
erty that ¢(x)~aK/|x|***(|x|—>0) and a p € F such that J(x)=px@(x)
<o(x) for all x € R°.

Proof. Let ¢(x)=aK/|x|*** if |2|=R, ¢(x)=0 otherwise and let
pe T satisfy {p>0}C{|x|<<s}. Then one can check that px¢g<¢ for
large R >0 and small §>0. Q.E.D.

It follows from (9) that for  in Lemma 2.3

lim t-%«@*» log J(t; ) < —C(v, aK).

t—oo

Since J(t; ) <J(t; ), we have (8) with aK replacing K. Letting
a 11, we have (8) by Theorem 2 (i).
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3. Proof of Theorem 1 (lower bound). In this section we prove
13) lim ¢t-%¢“*» log J(t) = — C(v, K).

t=rc0

By the inequality due to Pastur [7] (see also [4], [5]) we have
14) IOz IV I exp{—IN+T (N, feTF

where &’ft(f)-——uj {1 —exp(—t f go(x—y)f(x)dx)}dy, |t]|.=ess. sup |u|
and ||ul|1=J~ |u|de. Define f, € F,, t>0 by f(x)=1t"44*D f(t-1/¢+2g) for

any bounded f € &, and substitute f, for f in (14). Then, by change
of variables, we have

TRV FIZV Tt exp{—t*® () + DN},
where @,(f)=v j{l—exp(—j tp(t 2 (x—y)) f(x) dx)}dy, and hence
lim t-4/¢“+® log J(t) = —[I(f)+11m o,(N1.

t—oo

Note that there is an A>0 such that ¢(x)< A/|m|'“2, x € R? since ¢ is
bounded. Thus we can prove lim @,(f) <®(f) by using the Lebesgue-
Fatou theorem twice. Hence we have

(15) lim -+ log J(¢) = —[1(f) + (/)]

P
for any bounded fe %, It is easy to see by a truncation argument
that (15) holds for any f € &,, proving (13).

" 4, Proof of Theorem 2. The first assertion follows from the
definition of C(y, K) and (iii), (iv). Define &(f; a) for a>0 by @(f) in
(7) with aK replacing K and define C(a, v, K)=inf [al(/)+D()]1(f € F,)
for ¢>0. Noting that I(fp)=RI(f), O(fp)=R‘@(f; 1/R***), where
f@®)=R-*f(R'x), R>0, we have
(16) Cy, K)=1%+» C(1, vK) =vK¥<*» (b, K-, 1, 1).

Thus Theorem 2 follows from the following
Lemma 4.1. (i) CQ, K) | inf[I(f)+|{f>0}1=k(1) as K | 0.
(ii) C(a, 1,1 | I{l—exp(——l/[yl"‘”)}dy::c(l, DasalO0.
Here | A| denotes the Lebesgue measure of the set A.
Proof. Equalities in (i) and (ii) are known ([2], [7]). Since
€A, K) | inf [I(f)+|{U= oo}[] (K | 0), where U(y)= f |f @de_ ) 5 a

|d+2

consequence of the fact that U(y)= oo if and only if f(y)>0 a.e. for
each fe %, “If” part follows from U(y)gr‘d"zj fx+ydx since
le|<r

r‘dj JS(@+y)dr—const. X f(y) a.e. (r | 0) by the Lebesgue theorem
lz|<r
(see [8, I]). “Only if” part follows from

j(f(y):()) U(’y)dygj dyj |\/f(y+x)+ N/f(y—x)_ZVf(y)lz i

Ix'd+2

=const. X I(f)< oo



No. 3] Asymptotic Property of Brownian Motion 159

(see [8, VIII 5.2] for the equality). It is easy to see that Ca, 1,1
Jinf&(f) (@ | 0) with yv=K=1. We have @(f)=«(1,1) by Jensen’s
inequality, while we can choose f, € &, such that @(f,)—«(1, 1), proving
(ii). Q.E.D.

References

[11 M. D. Donsker and S. R. S. Varadhan: Asymptotic evaluation of Markov
process expectations for large time. II. Comm. Pure Appl. Math.,, 28,
279-301 (1975).

[2] ——: Asymptotics for the Wiener sausage. ibid., 28, 525-565 (1975).

[3] S. Nakao: On the spectral distribution of the Schrédinger operator with
random potential. Japan J. Math., 3, 111-139 (1977).

[4] H.Okura: On the spectral distributions of certain integro-differential
operators with random potential. Osaka J. Math., 16, 633-666 (1979).

Some limit theorems of Donsker-Varadhan type for Markov process
expectations (to appear).

[6] L. A. Pastur: Spectra of random self-adjoint operators. Russian Math.
Surveys, 28, 1-67 (1973).

Behavior of some Wiener integrals at t—oo and the density of states
of Schriodinger equations with random potential. Theor. Math. Phys., 32,
615-620 (1977).

[8]1 E. M. Stein: Singular Integrals and Differentiability Properties of Func-
tions. Princeton Univ. Press (1970).

[51]

[7]1




