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1. Let R° be an arbitrary Riemann surfaces and fix a 1-cycle ¢
and a Beltrami differential x on R° arbitrarily. For every t with
0<t<1 we denote by f¢ and R’ the quasiconformal mapping from R°
with the complex dilatation fx and the Riemann surface f*(R"), respec-
tively, and denote the 1-cycle fi(d) by the same d for every 1l-cycle d
on R°.

Now let ¢ be the holomorphic I',,-reproducing differential for a
given ¢ on R'. (Cf.[2, §1.5], and recall that 6:=6,(I",(E")) in the
notation of that paper.) Then the main purpose of this paper is to
show the following

Theorem 1. For every 1-cycle d, we have that

J ag-J 62=t-Re” 1000+ O(E).
d d RO
Corollary. When 620, then it holds that

d ¢ 4+ .11p0)~1. 0)2
&0 =t |20 Re [ [ @,

Because |[0§||§u=2f 8, Corollary follows at once from Theorem 1.
c

Here for a holomorphic quadratic differential ¢=a(2)dz* and a Beltrami
differential p=p(2)(dzZ/dz) on R°, we set

[[ wo=[[ ue a@iaznda.

The author is very grateful to Profs. Y. Kusunoki and F. Maitani
for their helpful suggestions.

2. First for every d and t, let ¢4 and o} the reproducers of d in
I',.,(RY and I',(RY), respectively, and set §=6%0 f*—6°, ,=c’0 f*—a’and
0,=0—6,. Recall that 6;=0"417%s%, and the following facts are known.

Lemma 1. 1) 6, (R, 2) (6,, ©})z=0.

Proof. 1) follows at once from [3, Theorem 3], and by [3, Theo-
rem 4], we have ((*c?) o [, 0D zo=(*at, 0)p:=cX d=(*02 @D r. Q.E.D.

Lemma 2. 1) 6,e (R, 2) (0,*%0)=0, 3) (0;, ®)ro= (61,09 po-

Proof. Because {0}: d is any 1-cycle on R’} spans I'(R%, 1) fol-
lows from Lemma 1, 2) and facts that 6,e I",(R") and ['(R)=1(R"
+I(R). And because I'(R)=I",(R)+I*(R%, 2) follows from
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Lemmas 1, 1) and 2, 1), and 3) follows from Lemma 1, 1) and the fact
that w}—d e I'E(RY). Q.E.D.

Now by Lemma 2, 2) we have (4, *6) =0, hence by the same argu-
ment as in the proof of [2, Theorem 1] (cf. [2, Theorem 3]) we can
show the following

Theorem 2. Letting ||p|l.=es8 -Supg |u|=k (<1), we have that

o gl 2R
Hac f 0c”R0£ l—tk ”00”120'

3. The proof of Theorem 1. First by [3, Theorem 4] it holds

that

I=[ 0:~[ =0t 00— @ s
[ a

= (03 o f?, a)(oi)RO - (‘92, wg)noz (‘9, wg)RO'
Hence by Lemmas 1, 2) and 2, 3) we have that
I:(ﬁu w?z)mz(ﬁn O'?z)RO'
On the other hand, Re (6, 85) = (6,, 6% zo— (0,, *3%) zo, hence by Lemma 2, 1)
we have that

I=Re (0, ip=Re [[ on*a:
=Re [[ ar @y i@z (—dais
—Re || tu@)- (7)1 a2 | dz A d2),

where, letting 2‘ and z=2° be the local parameter on R’ and R° respec-
tively, we set ¢:=al(z")dz* and 6%=a%(z)dz.
Since by Theorem 2 it holds that

[ 1@ @ ri@-a@ dendzl - [ ue)-a@)-a@)dznd

<l ptlleo 102 |20 - 1|02 0 S* — 62110 =O(D),
we conclude that

I=t-Re”Rop-02-0‘;—|—0(tZ).

Thus we have shown Theorem 1.

4. Remarks. Prof. Y. Kusunoki provedin [1]a similar results
as Theorem 1 for periods of normal differentials on Riemann surfaces
of class O”, and showed the complex differentiability of period matrix
on the Teichmiiller space of such a surface with respect to the Bers’
coordinates.

And for the holomorphic reproducing differential w!4-i*w?, Prof.
K. Oikawa proved the same formula as in Theorem 1 in the case that
the Beltrami differential 4 has a compact support, and the general
case can be treated similarly as above.
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