7. Representation Groups of the Group $Z_{p^n} \times Z_{p^n}$ ## By Kanzi Suzuki Department of Mathematics, Waseda University (Communicated by Kunihiko Kodaira, M. J. A., Jan. 12, 1980) Introduction. The dihedral group D_2 and the quaternion group Q_2 of order 8 have the same character table (Feit [1, §§ 7 and 11]). Generally the two non-abelian groups of order p^3 (p a prime number) have the same character table (Brauer [3, § 4]). It is easily shown that these groups are characterized as the representation groups of the product $Z_p \times Z_p$ of cyclic groups of order p. In this note, we consider the representation groups of $Z_{p^n} \times Z_{p^n}$, the product of cyclic groups of order p^n , and we deal with those complex characters. In § 1, we show that there exist two non-isomorphic representation groups of $Z_{p^n} \times Z_{p^n}$ (Theorem 1). When $n \ge 2$, these groups have not the same character table (§ 3, Corollary 2), but have the conjugacy classes of the type described in Proposition 1. Their non-linear irreducible characters are constructed by the abelian residue groups of certain normal subgroups (Theorem 2). 1. Generators and relations. Let G be a finite group and C^* the multiplicative group of the complex number field C. When G acts trivially on C^* , the finite abelian group $H^2(G, C^*)$ is called the Schur multiplier of G. A group H is called a representation group of G when H has a central subgroup A such that 1) $H/A \cong G$, 2) $|A| = |H^2(G, C^*)|$ and 3) A is contained in the commutator subgroup D(H). Let H be a representation group of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$, where p is a prime number and n is a positive integer. The sequence $$1 \rightarrow A \rightarrow H \rightarrow Z_{p^n} \times Z_{p^n} \rightarrow 1$$ is exact, and A = D(H) is contained in the center Z(H) of H. We choose representatives t, r of inverse images of two generators of $Z_{p^n} \times Z_{p^n}$. Then A is the cyclic group generated by the commutator $s = t^{-1}rtr^{-1}$ of order p^n , because $H^2(Z_{p^n} \times Z_{p^n}, C^*) \cong Z_{p^n}$ (see Suzuki [2, p. 261]). Consequently, the elements t, r and s generate H, i.e., $$(1) H=\langle t,r,s\rangle$$ and satisfy the relations $$(2) r^{p^n}, \quad t^{p^n} \in \langle s \rangle, \quad s^{p^n} = 1$$ (3) $$ts=st$$, $rs=sr$ and $t^{-1}rt=rs$ where p^n is the least positive integer q such that $t^q \in \langle s \rangle$ (this p^n is also the least positive integer q such that $r^q \in \langle s \rangle$). Note that A = Z(H). It is clear that groups defined by the relations (1)–(3) are representation groups of $Z_{p^n} \times Z_{p^n}$. Theorem 1. There is only two non-isomorphic representation groups of $Z_{p^n} \times Z_{p^n}$. **Proof.** Let H be a representation group of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ defined by the conditions (1)–(3). Since $\langle t, s \rangle$ and $\langle r, s \rangle$ are abelian groups of order p^{2n} , we may consider the following three cases: $$H_1 = \langle t, r, s \rangle$$; $t^{p^n} = r^{p^n} = s^{p^n} = 1$, $ts = st$, $rs = sr = t^{-1}rt$ $H_2 = \langle t, r \rangle$; $t^{p^n} = r^{p^{2n}} = 1$, $t^{-1}rt = r^{1+p^n}$, $(r^{p^n} = s)$ $H_3 = \langle t, r \rangle$; $r^{p^{2n}} = 1$, $t^{p^n} = r^{p^n}$, $t^{-1}rt = r^{1+p^n}$, $(r^{p^n} = s)$. If p is odd or if p=2, $n\geq 2$, then H_2 is isomorphic to H_3 , not isomorphic to H_1 . If p=2, n=1, then $H_1=\langle t,rt\rangle$ is isomorphic to $H_2=D_2$ and is not isomorphic to $H_3=Q_2$. 2. Conjugacy classes. In the sequel, we denote by H a representation group of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ with the conditions (1)-(3), and by m(i,j) a non-negative integer such that $p^{m(i,j)}$ is the largest power of p dividing the greatest common divisor (i,j) of i and j. Proposition 1. 1) The number of conjugacy classes of H is given by $$p^{2n} + p^{n-1}(p^n - 1)$$. 2) Each conjugacy class of H not consisting of central elements is of the form $$(4) t^i r^j s^k \langle s^{p^{m(i,j)}} \rangle$$ where $0 \le i$, $j \le p^n - 1$ and $0 \le k \le p^{m(i,j)} - 1$, except the case i = j = 0. Proof of 2). Each element h of H is uniquely expressible in the form $$h=t^ir^js^{k_0}$$, $0 \leq i, j, k_0 \leq p^n-1$. If h is not contained in Z(H), then i or j is a non-zero integer. Using the relation (3), we have $$(5) (t^{u}r^{v})^{-1}h(t^{u}r^{v}) = hs^{uj-vi}.$$ If we put $(i, j) = qp^{m(i,j)}$ with $p \nmid q$, the relation (5) yields that the conjugacy class containing h is given by $t^i r^j s^k \langle s^{p^{m(i,j)}} \rangle$, where $k \equiv k_0 \mod p^{m(i,j)}$ $(0 \le k \le p^{m(i,j)} - 1)$. Proof of 1). For a non-negative integer m, we consider the number of pairs of i and j satisfying the conditions that $0 \le i$, $j \le p^n - 1$ and m(i, j) = m, except the case i = j = 0. This number is given by $$p^{n-m}\varphi(p^{n-m}) + \varphi(p^{n-m})p^{n-m} - \varphi(p^{n-m})^2$$ = $\varphi(p^{n-m})p^{n-m-1}(p+1)$ where φ denotes the Euler function. Since k (resp. m) ranges over all non-negative integers less than p^m (resp. n), the number of the conjugacy classes of the form (4) is given by $$\sum_{m=0}^{n-1} p^m \varphi(p^{n-m}) p^{n-m-1}(p+1) = (p+1) p^{n-1} \sum_{m=0}^{n-1} \varphi(p^{n-m}).$$ On the other hand the number of conjugacy classes consisting of a single central element is $|Z(H)|=p^n$, so the number of all conjugacy classes of H is given by $$p^{n}+(p+1)p^{n-1}\sum_{m=0}^{n-1}\varphi(p^{n-m})=p^{2n}+p^{n-1}(p^{n}-1).$$ 3. Irreducible characters. We shall construct complex irreducible characters of H. Lemma 1. If a finite group G has an abelian normal subgroup N such that G/N is cyclic, then any irreducible character of G is induced from a linear character of a subgroup L containing N. Remark. This Lemma is also true even if G/N is abelian (see Yamada [4, Theorem 1]). Proof. Let χ be an irreducible character of G and λ a linear constituent of the restriction $\chi|_N$ of χ to N. Let L be the inercia group of $\lambda: L = \{g \in G; \lambda^g = \lambda\}$, where $\lambda^g(h) = \lambda(g^{-1}hg)$ for any $h \in N$. By Clifford's theorem there exists an irreducible character θ of L such that $\chi = \theta^G$ (θ^G denotes the induced character) and $\theta|_N = e\lambda$ for some positive integer e. Since L/N is cyclic, we obtain e=1 (Feit [1, (9.12)]), which shows that θ is linear, and the proof is complete. Now a representation group H has a maximal abelian normal subgroup $\langle r, s \rangle$. Since $H/\langle r, s \rangle$ is cyclic, we have the unique composition series over $\langle r, s \rangle$ $$\langle r,s\rangle = L_n \subset L_{n-1} \subset \cdots \subset L_1 \subset H$$ where $L_m = \langle t^{p^m}, r, s \rangle$. Since $|H/L_m| = p^m$, it follows from Lemma 1 that H has a non-linear irreducible character of degree p^m induced from a linear character λ of L_m $(1 \leq m \leq n)$. Note that $\lambda(s)$ is a p^m -th root of unity, because $D(L_m) = \langle s^{p^m} \rangle$. **Lemma 2.** The induced character λ^H is irreducible if and only if $\lambda(s)$ is a primitive p^m -th root of unity. Proof. By Frobenius reciprocity theorem, we have $$(\lambda^H, \lambda^H) = (\lambda^H|_{L_m}, \lambda) = \sum_{u=0}^{p^m-1} (\lambda^{tu}, \lambda).$$ Hence λ^{μ} is irreducible if and only if $\lambda^{\iota\nu} \neq \lambda$ for all integer $u \equiv 0 \mod p^m$. Since any element h of L_m has the form $h = t^{\iota p^m} r^{\jmath} s^k$ $(0 \leq i \leq p^{n-m} - 1, 0 \leq j, k \leq p^n - 1)$, it follows from (5) that (6) $$\lambda^{iu}(h) = \lambda(h)\lambda(s)^{uj} \qquad (j=0,1,\cdots,p^n-1).$$ Therefore $\lambda^{\iota u} \neq \lambda$ for all integer $u \equiv 0 \mod p^m$ if and only if $\lambda(s)$ is a primitive p^m -th root of unity, which proves Lemma 2. To determine irreducible characters of H, we define the normal subgroups $$T_m = \langle t^{p^m}, r^{p^m}, s \rangle, \qquad (m=1, 2, \dots, n),$$ and put $$\overline{T}_m = T_m/\langle s^{p^m} \rangle$$, $(m=1,2,\dots,n)$. Then T_m is contained in L_m and \overline{T}_m is abelian. For each $h \in T_m$, we denote by \bar{h} the image of h under the natural homomorphism $T_m \rightarrow \bar{T}_m$. Theorem 2. A class function χ is an irreducible character of H of degree p^m if and only if (7) $$\chi(h) = \begin{cases} 0, & (h \in T_m) \\ p^m \rho(\overline{h}), & (h \in T_m), \end{cases}$$ where p is a linear character of \overline{T}_m whose restriction to $\langle \bar{s} \rangle$ is faithful. **Proof.** Suppose that χ is an irreducible character of H of degree p^m , then χ is induced from a linear character λ of L_m and χ vanishes outside L_m . For each $h=t^{ip^m}r^js^k\in L_m$, we have from (6) $$\chi(h) = \lambda(h) \sum_{u=0}^{p^{m-1}} (\lambda(s)^j)^u.$$ Since $\lambda(s)$ is a primitive p^m -th root of unity, it follows that $$\sum_{u=0}^{p^m-1} (\lambda(s)^j)^u = \begin{cases} 0, & (j \equiv 0 \mod p^m) \\ p^m, & (j \equiv 0 \mod p^m), \end{cases}$$ hence $$\chi(h) = \begin{cases} 0, & (h \in T_m) \\ p^m \lambda(h), & (h \in T_m). \end{cases}$$ If we define a linear character $\bar{\mu}$ of \bar{T}_m by putting $\bar{\mu}(\bar{h}) = \lambda(h)$, then $\bar{\mu}$ is faithful on $\langle \bar{s} \rangle$, and $$\chi(h) = egin{cases} 0, & (h \in T_m) \ p^m ar{\mu}(ar{h}), & (h \in T_m). \end{cases}$$ Conversely, let χ be a class function defined by (7). Since $D(L_m) = \langle s^{p^m} \rangle \subset T_m$, the linear character μ of T_m given by $\mu(h) = \bar{\mu}(\bar{h})$ is the restriction of a linear character λ of L_m . Since μ is faithful on $\langle \bar{s} \rangle$, $\lambda(s)$ is a primitive p^m -th root of unity. It follows that λ^H is irreducible by Lemma 2 and is equal to χ , which proves Theorem 2. We describe the structure of \overline{T}_m of each group in Theorem 1. Putting $t_0 = t^{p^m}$, $r_0 = r^{p^m}$, we have $$\overline{T}_m = \langle \overline{t}_0, \overline{r}_0, \overline{s} \rangle.$$ Case 1. If p is odd or if p=2, $n \ge 2$, then in H_1 , $$egin{aligned} ar{T}_{m}\!=\!\langlear{t}_{\scriptscriptstyle 0} angle\! imes\!\langlear{r}_{\scriptscriptstyle 0} angle\! imes\!\langlear{s} angle,\ \langlear{t}_{\scriptscriptstyle 0} angle,\langlear{r}_{\scriptscriptstyle 0} angle\!\cong\!oldsymbol{Z}_{p^{n-m}}, &\langlear{s} angle\!\cong\!oldsymbol{Z}_{p^{m}}, \end{aligned}$$ in H_2 , $$egin{aligned} ar{T}_m = & \langle ar{t}_0 angle imes \langle ar{r}_0 angle, & ar{s} = ar{r}_0^{p^n-m}, \ & \langle ar{t}_0 angle \cong oldsymbol{Z}_{p^n-m}, & \langle ar{r}_0 angle \cong oldsymbol{Z}_{p^n}, \end{aligned}$$ Case 2. If p=2, n=1, then in H_1 and H_3 , $$\overline{T}_1 = \langle \bar{s} \rangle, \qquad \langle \bar{s} \rangle \cong Z_2.$$ Corollary 1. The number of the irreducible characters of degree p^m of a representation group H of $Z_{p^n} \times Z_{p^n}$ is $$p^{2n-1}(p-1)p^{-m}$$. **Proof.** By Theorem 2, this number is equal to the number of the linear characters of \overline{T}_m which are faithful on $\langle \bar{s} \rangle$. Noting that there exists a cyclic direct factor of \overline{T}_m which contains $\langle \bar{s} \rangle$, we can prove that this number is equal to $p^{2n-1}(p-1)p^{-m}$. Now let H, H' be the two non-isomorphic representation groups of $Z_{p^n} \times Z_{p^n}$. We define a (set-theoretical) one-to-one onto mapping from $H = \langle t, r, s \rangle$ to $H' = \langle t', r', s' \rangle$: If $h \in H$ is written as $h = t^i r^j s^k$, $h \mapsto h' = t'^i r'^j s'^k$ where $0 \le i, j, k \le p^n - 1$. By this mapping, a conjugacy class C of H corresponds to a conjugacy class C' of H' (see Proposition 1), thus we have a one-to-one onto correspondence between the set of conjugacy classes of H and the set of conjugacy classes of H'. Furthermore, the subgroup $T_m = \langle t^{p^m}, r^{p^m}, s \rangle$ of H corresponds to the subgroup $T'_m = \langle t'^{p^m}, r'^{p^m}, s' \rangle$ of H'. We say that the group H and H' have the same character table if there exists a one-to-one onto mapping from the set $\{\chi\}$ of irreducible characters of H to the set $\{\chi'\}$ of irreducible characters of H' which satisfies the condition $\chi'(C') = \chi(C)$ for any conjugacy class C and any irreducible character χ . Corollary 2. The two non-isomorphic representation groups of $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ have the same character table if and only if n=1. Proof. The mapping $C\mapsto C'$ induces the one-to-one onto mapping from \overline{T}_m to \overline{T}'_m such that $\overline{t}_0, \overline{r}_0, \overline{s}$ corresponds to $\overline{t}'_0, \overline{r}'_0, \overline{s}'$ respectively, for each m $(m=1,2,\cdots,n)$. Let \mathfrak{M}_m (resp. \mathfrak{M}'_m) be the set of linear characters of \overline{T}_m (resp. \overline{T}'_m) which are faithful on $\langle \overline{s} \rangle$ (resp. $\langle \overline{s}' \rangle$). By Theorem 2, the groups H,H' have the same character table in the above sense if and only if for each m there exists a one-to-one onto mapping $\mu\mapsto \mu'$ from \mathfrak{M}_m to \mathfrak{M}'_m such that $\mu'(\overline{h'})=\overline{\mu}(\overline{h})$ for any $\overline{h}\in \overline{T}_m$ and any $\overline{\mu}\in M_m$. It is easily seen that this happens only when n=1 and the corollary is proved. Remark. The same argument can be applied to the case of central extensions of $Z_{p^l} \times Z_{p^m}$ by a cyclic group Z_{p^n} contained in the commutator subgroup. $(n \le m \le l)$. Acknowledgement. The author would like to thank Prof. S. Kondo and Prof. Y. Hinohara for their encouragement and advice. ## References - [1] W. Feit: Characters of Finite Groups. Benjamin, New York (1967). - [2] M. Suzuki: Group Theory I, II. Iwanami Shoten Pub., Tokyo (1977) (in Japanese). - [3] R. Brauer: Representations of finite groups. Lectures on Modern Mathematics (ed. by T. L. Saaty). John Willey and Sons, vol. 1, pp. 133-175 (1963). - [4] T. Yamada: On the group algebras of metabelian groups over algebraic number fields. Osaka J. Math., 6, 211-228 (1969). - [5] R. J. Haggarty and J. F. Humphreys: Projective characters of finite groups. Proc. London Math. Soc., 36(3), 176-192 (1978).