## 7. Representation Groups of the Group $Z_{p^n} \times Z_{p^n}$

## By Kanzi Suzuki

Department of Mathematics, Waseda University

(Communicated by Kunihiko Kodaira, M. J. A., Jan. 12, 1980)

Introduction. The dihedral group  $D_2$  and the quaternion group  $Q_2$  of order 8 have the same character table (Feit [1, §§ 7 and 11]). Generally the two non-abelian groups of order  $p^3$  (p a prime number) have the same character table (Brauer [3, § 4]). It is easily shown that these groups are characterized as the representation groups of the product  $Z_p \times Z_p$  of cyclic groups of order p.

In this note, we consider the representation groups of  $Z_{p^n} \times Z_{p^n}$ , the product of cyclic groups of order  $p^n$ , and we deal with those complex characters. In § 1, we show that there exist two non-isomorphic representation groups of  $Z_{p^n} \times Z_{p^n}$  (Theorem 1). When  $n \ge 2$ , these groups have not the same character table (§ 3, Corollary 2), but have the conjugacy classes of the type described in Proposition 1. Their non-linear irreducible characters are constructed by the abelian residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and  $C^*$  the multiplicative group of the complex number field C. When G acts trivially on  $C^*$ , the finite abelian group  $H^2(G, C^*)$  is called the Schur multiplier of G. A group H is called a representation group of G when H has a central subgroup A such that 1)  $H/A \cong G$ , 2)  $|A| = |H^2(G, C^*)|$  and 3) A is contained in the commutator subgroup D(H).

Let H be a representation group of  $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$ , where p is a prime number and n is a positive integer. The sequence

$$1 \rightarrow A \rightarrow H \rightarrow Z_{p^n} \times Z_{p^n} \rightarrow 1$$

is exact, and A = D(H) is contained in the center Z(H) of H. We choose representatives t, r of inverse images of two generators of  $Z_{p^n} \times Z_{p^n}$ . Then A is the cyclic group generated by the commutator  $s = t^{-1}rtr^{-1}$  of order  $p^n$ , because  $H^2(Z_{p^n} \times Z_{p^n}, C^*) \cong Z_{p^n}$  (see Suzuki [2, p. 261]).

Consequently, the elements t, r and s generate H, i.e.,

$$(1) H=\langle t,r,s\rangle$$

and satisfy the relations

$$(2) r^{p^n}, \quad t^{p^n} \in \langle s \rangle, \quad s^{p^n} = 1$$

(3) 
$$ts=st$$
,  $rs=sr$  and  $t^{-1}rt=rs$ 

where  $p^n$  is the least positive integer q such that  $t^q \in \langle s \rangle$  (this  $p^n$  is also the least positive integer q such that  $r^q \in \langle s \rangle$ ). Note that A = Z(H).

It is clear that groups defined by the relations (1)–(3) are representation groups of  $Z_{p^n} \times Z_{p^n}$ .

Theorem 1. There is only two non-isomorphic representation groups of  $Z_{p^n} \times Z_{p^n}$ .

**Proof.** Let H be a representation group of  $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$  defined by the conditions (1)–(3). Since  $\langle t, s \rangle$  and  $\langle r, s \rangle$  are abelian groups of order  $p^{2n}$ , we may consider the following three cases:

$$H_1 = \langle t, r, s \rangle$$
;  $t^{p^n} = r^{p^n} = s^{p^n} = 1$ ,  $ts = st$ ,  $rs = sr = t^{-1}rt$   
 $H_2 = \langle t, r \rangle$ ;  $t^{p^n} = r^{p^{2n}} = 1$ ,  $t^{-1}rt = r^{1+p^n}$ ,  $(r^{p^n} = s)$   
 $H_3 = \langle t, r \rangle$ ;  $r^{p^{2n}} = 1$ ,  $t^{p^n} = r^{p^n}$ ,  $t^{-1}rt = r^{1+p^n}$ ,  $(r^{p^n} = s)$ .

If p is odd or if p=2,  $n\geq 2$ , then  $H_2$  is isomorphic to  $H_3$ , not isomorphic to  $H_1$ . If p=2, n=1, then  $H_1=\langle t,rt\rangle$  is isomorphic to  $H_2=D_2$  and is not isomorphic to  $H_3=Q_2$ .

2. Conjugacy classes. In the sequel, we denote by H a representation group of  $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$  with the conditions (1)-(3), and by m(i,j) a non-negative integer such that  $p^{m(i,j)}$  is the largest power of p dividing the greatest common divisor (i,j) of i and j.

Proposition 1. 1) The number of conjugacy classes of H is given by

$$p^{2n} + p^{n-1}(p^n - 1)$$
.

2) Each conjugacy class of H not consisting of central elements is of the form

$$(4) t^i r^j s^k \langle s^{p^{m(i,j)}} \rangle$$

where  $0 \le i$ ,  $j \le p^n - 1$  and  $0 \le k \le p^{m(i,j)} - 1$ , except the case i = j = 0.

Proof of 2). Each element h of H is uniquely expressible in the form

$$h=t^ir^js^{k_0}$$
,  $0 \leq i, j, k_0 \leq p^n-1$ .

If h is not contained in Z(H), then i or j is a non-zero integer. Using the relation (3), we have

$$(5) (t^{u}r^{v})^{-1}h(t^{u}r^{v}) = hs^{uj-vi}.$$

If we put  $(i, j) = qp^{m(i,j)}$  with  $p \nmid q$ , the relation (5) yields that the conjugacy class containing h is given by  $t^i r^j s^k \langle s^{p^{m(i,j)}} \rangle$ , where  $k \equiv k_0 \mod p^{m(i,j)}$   $(0 \le k \le p^{m(i,j)} - 1)$ .

Proof of 1). For a non-negative integer m, we consider the number of pairs of i and j satisfying the conditions that  $0 \le i$ ,  $j \le p^n - 1$  and m(i, j) = m, except the case i = j = 0. This number is given by

$$p^{n-m}\varphi(p^{n-m}) + \varphi(p^{n-m})p^{n-m} - \varphi(p^{n-m})^2$$
  
=  $\varphi(p^{n-m})p^{n-m-1}(p+1)$ 

where  $\varphi$  denotes the Euler function. Since k (resp. m) ranges over all non-negative integers less than  $p^m$  (resp. n), the number of the conjugacy classes of the form (4) is given by

$$\sum_{m=0}^{n-1} p^m \varphi(p^{n-m}) p^{n-m-1}(p+1) = (p+1) p^{n-1} \sum_{m=0}^{n-1} \varphi(p^{n-m}).$$

On the other hand the number of conjugacy classes consisting of a single central element is  $|Z(H)|=p^n$ , so the number of all conjugacy classes of H is given by

$$p^{n}+(p+1)p^{n-1}\sum_{m=0}^{n-1}\varphi(p^{n-m})=p^{2n}+p^{n-1}(p^{n}-1).$$

3. Irreducible characters. We shall construct complex irreducible characters of H.

Lemma 1. If a finite group G has an abelian normal subgroup N such that G/N is cyclic, then any irreducible character of G is induced from a linear character of a subgroup L containing N.

Remark. This Lemma is also true even if G/N is abelian (see Yamada [4, Theorem 1]).

Proof. Let  $\chi$  be an irreducible character of G and  $\lambda$  a linear constituent of the restriction  $\chi|_N$  of  $\chi$  to N. Let L be the inercia group of  $\lambda: L = \{g \in G; \lambda^g = \lambda\}$ , where  $\lambda^g(h) = \lambda(g^{-1}hg)$  for any  $h \in N$ . By Clifford's theorem there exists an irreducible character  $\theta$  of L such that  $\chi = \theta^G$  ( $\theta^G$  denotes the induced character) and  $\theta|_N = e\lambda$  for some positive integer e. Since L/N is cyclic, we obtain e=1 (Feit [1, (9.12)]), which shows that  $\theta$  is linear, and the proof is complete.

Now a representation group H has a maximal abelian normal subgroup  $\langle r, s \rangle$ . Since  $H/\langle r, s \rangle$  is cyclic, we have the unique composition series over  $\langle r, s \rangle$ 

$$\langle r,s\rangle = L_n \subset L_{n-1} \subset \cdots \subset L_1 \subset H$$

where  $L_m = \langle t^{p^m}, r, s \rangle$ . Since  $|H/L_m| = p^m$ , it follows from Lemma 1 that H has a non-linear irreducible character of degree  $p^m$  induced from a linear character  $\lambda$  of  $L_m$   $(1 \leq m \leq n)$ . Note that  $\lambda(s)$  is a  $p^m$ -th root of unity, because  $D(L_m) = \langle s^{p^m} \rangle$ .

**Lemma 2.** The induced character  $\lambda^H$  is irreducible if and only if  $\lambda(s)$  is a primitive  $p^m$ -th root of unity.

Proof. By Frobenius reciprocity theorem, we have

$$(\lambda^H, \lambda^H) = (\lambda^H|_{L_m}, \lambda) = \sum_{u=0}^{p^m-1} (\lambda^{tu}, \lambda).$$

Hence  $\lambda^{\mu}$  is irreducible if and only if  $\lambda^{\iota\nu} \neq \lambda$  for all integer  $u \equiv 0 \mod p^m$ . Since any element h of  $L_m$  has the form  $h = t^{\iota p^m} r^{\jmath} s^k$   $(0 \leq i \leq p^{n-m} - 1, 0 \leq j, k \leq p^n - 1)$ , it follows from (5) that

(6) 
$$\lambda^{iu}(h) = \lambda(h)\lambda(s)^{uj} \qquad (j=0,1,\cdots,p^n-1).$$

Therefore  $\lambda^{\iota u} \neq \lambda$  for all integer  $u \equiv 0 \mod p^m$  if and only if  $\lambda(s)$  is a primitive  $p^m$ -th root of unity, which proves Lemma 2.

To determine irreducible characters of H, we define the normal subgroups

$$T_m = \langle t^{p^m}, r^{p^m}, s \rangle, \qquad (m=1, 2, \dots, n),$$

and put

$$\overline{T}_m = T_m/\langle s^{p^m} \rangle$$
,  $(m=1,2,\dots,n)$ .

Then  $T_m$  is contained in  $L_m$  and  $\overline{T}_m$  is abelian.

For each  $h \in T_m$ , we denote by  $\bar{h}$  the image of h under the natural homomorphism  $T_m \rightarrow \bar{T}_m$ .

Theorem 2. A class function  $\chi$  is an irreducible character of H of degree  $p^m$  if and only if

(7) 
$$\chi(h) = \begin{cases} 0, & (h \in T_m) \\ p^m \rho(\overline{h}), & (h \in T_m), \end{cases}$$

where p is a linear character of  $\overline{T}_m$  whose restriction to  $\langle \bar{s} \rangle$  is faithful.

**Proof.** Suppose that  $\chi$  is an irreducible character of H of degree  $p^m$ , then  $\chi$  is induced from a linear character  $\lambda$  of  $L_m$  and  $\chi$  vanishes outside  $L_m$ . For each  $h=t^{ip^m}r^js^k\in L_m$ , we have from (6)

$$\chi(h) = \lambda(h) \sum_{u=0}^{p^{m-1}} (\lambda(s)^j)^u.$$

Since  $\lambda(s)$  is a primitive  $p^m$ -th root of unity, it follows that

$$\sum_{u=0}^{p^m-1} (\lambda(s)^j)^u = \begin{cases} 0, & (j \equiv 0 \mod p^m) \\ p^m, & (j \equiv 0 \mod p^m), \end{cases}$$

hence

$$\chi(h) = \begin{cases} 0, & (h \in T_m) \\ p^m \lambda(h), & (h \in T_m). \end{cases}$$

If we define a linear character  $\bar{\mu}$  of  $\bar{T}_m$  by putting  $\bar{\mu}(\bar{h}) = \lambda(h)$ , then  $\bar{\mu}$  is faithful on  $\langle \bar{s} \rangle$ , and

$$\chi(h) = egin{cases} 0, & (h \in T_m) \ p^m ar{\mu}(ar{h}), & (h \in T_m). \end{cases}$$

Conversely, let  $\chi$  be a class function defined by (7). Since  $D(L_m) = \langle s^{p^m} \rangle \subset T_m$ , the linear character  $\mu$  of  $T_m$  given by  $\mu(h) = \bar{\mu}(\bar{h})$  is the restriction of a linear character  $\lambda$  of  $L_m$ . Since  $\mu$  is faithful on  $\langle \bar{s} \rangle$ ,  $\lambda(s)$  is a primitive  $p^m$ -th root of unity. It follows that  $\lambda^H$  is irreducible by Lemma 2 and is equal to  $\chi$ , which proves Theorem 2.

We describe the structure of  $\overline{T}_m$  of each group in Theorem 1. Putting  $t_0 = t^{p^m}$ ,  $r_0 = r^{p^m}$ , we have

$$\overline{T}_m = \langle \overline{t}_0, \overline{r}_0, \overline{s} \rangle.$$

Case 1. If p is odd or if p=2,  $n \ge 2$ , then in  $H_1$ ,

$$egin{aligned} ar{T}_{m}\!=\!\langlear{t}_{\scriptscriptstyle 0}
angle\! imes\!\langlear{r}_{\scriptscriptstyle 0}
angle\! imes\!\langlear{s}
angle,\ \langlear{t}_{\scriptscriptstyle 0}
angle,\langlear{r}_{\scriptscriptstyle 0}
angle\!\cong\!oldsymbol{Z}_{p^{n-m}}, &\langlear{s}
angle\!\cong\!oldsymbol{Z}_{p^{m}}, \end{aligned}$$

in  $H_2$ ,

$$egin{aligned} ar{T}_m = & \langle ar{t}_0 
angle imes \langle ar{r}_0 
angle, & ar{s} = ar{r}_0^{p^n-m}, \ & \langle ar{t}_0 
angle \cong oldsymbol{Z}_{p^n-m}, & \langle ar{r}_0 
angle \cong oldsymbol{Z}_{p^n}, \end{aligned}$$

Case 2. If p=2, n=1, then in  $H_1$  and  $H_3$ ,

$$\overline{T}_1 = \langle \bar{s} \rangle, \qquad \langle \bar{s} \rangle \cong Z_2.$$

Corollary 1. The number of the irreducible characters of degree  $p^m$  of a representation group H of  $Z_{p^n} \times Z_{p^n}$  is

$$p^{2n-1}(p-1)p^{-m}$$
.

**Proof.** By Theorem 2, this number is equal to the number of the linear characters of  $\overline{T}_m$  which are faithful on  $\langle \bar{s} \rangle$ . Noting that there exists a cyclic direct factor of  $\overline{T}_m$  which contains  $\langle \bar{s} \rangle$ , we can prove that this number is equal to  $p^{2n-1}(p-1)p^{-m}$ .

Now let H, H' be the two non-isomorphic representation groups of  $Z_{p^n} \times Z_{p^n}$ . We define a (set-theoretical) one-to-one onto mapping from  $H = \langle t, r, s \rangle$  to  $H' = \langle t', r', s' \rangle$ : If  $h \in H$  is written as  $h = t^i r^j s^k$ ,  $h \mapsto h' = t'^i r'^j s'^k$ 

where  $0 \le i, j, k \le p^n - 1$ . By this mapping, a conjugacy class C of H corresponds to a conjugacy class C' of H' (see Proposition 1), thus we have a one-to-one onto correspondence between the set of conjugacy classes of H and the set of conjugacy classes of H'. Furthermore, the subgroup  $T_m = \langle t^{p^m}, r^{p^m}, s \rangle$  of H corresponds to the subgroup  $T'_m = \langle t'^{p^m}, r'^{p^m}, s' \rangle$  of H'.

We say that the group H and H' have the same character table if there exists a one-to-one onto mapping from the set  $\{\chi\}$  of irreducible characters of H to the set  $\{\chi'\}$  of irreducible characters of H' which satisfies the condition  $\chi'(C') = \chi(C)$  for any conjugacy class C and any irreducible character  $\chi$ .

Corollary 2. The two non-isomorphic representation groups of  $\mathbb{Z}_{p^n} \times \mathbb{Z}_{p^n}$  have the same character table if and only if n=1.

Proof. The mapping  $C\mapsto C'$  induces the one-to-one onto mapping from  $\overline{T}_m$  to  $\overline{T}'_m$  such that  $\overline{t}_0, \overline{r}_0, \overline{s}$  corresponds to  $\overline{t}'_0, \overline{r}'_0, \overline{s}'$  respectively, for each m  $(m=1,2,\cdots,n)$ . Let  $\mathfrak{M}_m$  (resp.  $\mathfrak{M}'_m$ ) be the set of linear characters of  $\overline{T}_m$  (resp.  $\overline{T}'_m$ ) which are faithful on  $\langle \overline{s} \rangle$  (resp.  $\langle \overline{s}' \rangle$ ). By Theorem 2, the groups H,H' have the same character table in the above sense if and only if for each m there exists a one-to-one onto mapping  $\mu\mapsto \mu'$  from  $\mathfrak{M}_m$  to  $\mathfrak{M}'_m$  such that  $\mu'(\overline{h'})=\overline{\mu}(\overline{h})$  for any  $\overline{h}\in \overline{T}_m$  and any  $\overline{\mu}\in M_m$ . It is easily seen that this happens only when n=1 and the corollary is proved.

Remark. The same argument can be applied to the case of central extensions of  $Z_{p^l} \times Z_{p^m}$  by a cyclic group  $Z_{p^n}$  contained in the commutator subgroup.  $(n \le m \le l)$ .

Acknowledgement. The author would like to thank Prof. S. Kondo and Prof. Y. Hinohara for their encouragement and advice.

## References

- [1] W. Feit: Characters of Finite Groups. Benjamin, New York (1967).
- [2] M. Suzuki: Group Theory I, II. Iwanami Shoten Pub., Tokyo (1977) (in Japanese).

- [3] R. Brauer: Representations of finite groups. Lectures on Modern Mathematics (ed. by T. L. Saaty). John Willey and Sons, vol. 1, pp. 133-175 (1963).
- [4] T. Yamada: On the group algebras of metabelian groups over algebraic number fields. Osaka J. Math., 6, 211-228 (1969).
- [5] R. J. Haggarty and J. F. Humphreys: Projective characters of finite groups. Proc. London Math. Soc., 36(3), 176-192 (1978).