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7. Representation Groups of the Group Z,XZy
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Introduction. The dihedral group D, and the quaternion group
Q. of order 8 have the same character table (Feit [1, §§7 and 11]).
Generally the two non-abelian groups of order p* (p a prime number)
have the same character table (Brauer [3, §4]). It is easily shown
that these groups are characterized as the representation groups of
the product Z, X Z, of cyclic groups of order p.

In this note, we consider the representation groups of Z,. X Z,.,
the product of cyclic groups of order p”, and we deal with those com-
plex characters. In §1, we show that there exist two non-isomorphic
representation groups of Z,.XZ,. (Theorem 1). When n>2, these
groups have not the same character table (§ 3, Corollary 2), but have
the conjugacy classes of the type described in Proposition 1. Their
non-linear irreducible characters are constructed by the abelian
residue groups of certain normal subgroups (Theorem 2).

1. Generators and relations. Let G be a finite group and C* the
multiplicative group of the complex number field C. When G acts
trivially on C*, the finite abelian group H*G, C*) is called the Schur
multiplier of G. A group H is called a representation group of G
when H has a central subgroup A such that 1) H/A=G, 2) |A]
=|H*G, C*)| and 3) A is contained in the commutator subgroup D(H).

Let H be a representation group of Z,. X Z,., where p is a prime
number and » is a positive integer. The sequence

1-A—-H—Z,. X Z,,—1
is exact, and A=D(H) is contained in the center Z(H) of H. We
choose representatives ¢, » of inverse images of two generators of
ZnwXZ,m Then A is the cyclic group generated by the commutator
s=t"'rtr-* of order p*, because H(ZnX Z, C*)=Z, . (see Suzuki [2,
p. 261]).
Consequently, the elements ¢, and s generate H, i.e.,

(1) H={(t,r,s)

and satisfy the relations

(2) r*, tP"e(s), s”"=1

(3) ts=st, rs=sr and t¢'rt=rs

where p™ is the least positive integer ¢ such that ¢?¢ (s} (this p” is
also the least positive integer ¢ such that »? e (s)). Note that A=Z(H).
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Itis clear that groups defined by the relations (1)-(3) are representation
groups of Z,. X Z ..

Theorem 1. There is only two mon-isomorphic representation
groups of Z,u X Zn.

Proof. Let H be a representation group of Z,.X Z,. defined by
the conditions (1)-(3). Since (¢, s) and {7, s) are abelian groups of
order p*", we may consider the following three cases:

H,={,r,8); tr"=r""=s"=1, ts=st, rs=sr=t""rt

H,={,r)y; tr"=r"=1, t"'rt=r"*"", (r’"=s)

H,={t,ry; r*=1, t*"=r?", t rt=r"*?", (r""=s).
If p is odd or if p=2, n=2, then H, is isomorphic to H,, not isomor-
phic to H,. If p=2, n=1, then H,={¢,rt) is isomorphic to H,=D,
and is not isomorphic to H,=Q,.

2. Conjugacy classes. In the sequel, we denote by H a repres-
entation group of Z,. X Z,. with the conditions (1)-(3), and by m(i, 5)
a non-negative integer such that p™“?” is the largest power of »
dividing the greatest common divisor (3, 7) of 7 and j.

Proposition 1. 1) The number of conjugacy classes of H is
given by

P +pti(p"—1).

2) FEach conjugacy class of H not consisting of central elements
18 of the form
(4 ) ti,,.jsk<spm(i,f)>
where 01, j<p"—1 and 0<k<p™*? —1, except the case t=35=0.

Proof of 2). Each element i of H is uniquely expressible in the
form

h=trist, 04,7, k,<pr—1.
If h is not contained in Z(H), then ¢ or j is a non-zero integer. Using
the relation (3), we have
(5) @) h(t“r?)=hs“ %,
If we put (¢, ))=qp™“? with ptq, the relation (5) yields that the con-
jugacy class containing h is given by ti/s*(s*™"“”), where
k=k, mod p™“? (0<kZSp™h9—1).

Proof of 1). For a non-negative integer m, we consider the
number of pairs of 4 and j satisfying the conditions that 04, 7<p*—1
and m(t, 7)) =m, except the cage i=7=0. This number is given by

P "p(p™ ™) 4 @(p™ )P T —p(p" ™)
=p@"™p* " (p+1)
where ¢ denotes the Euler function. Since % (resp. m) ranges over
all non-negative integers less than p™ (resp. n), the number of the
conjugacy classes of the form (4) is given by

n-1

S pre(pr-m)pr i (p 4+ 1) =(p+ Dp"! mz o™ ™).

m=0
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On the other hand the number of conjugacy classes consisting of a
single central element is |Z(H)|=p", so the number of all conjugacy
classes of H is given by

n—-1
p"+(P+1pr! ZJO (@ ™) =p*"4p" (p"—1).

3. Irreducible characters. We shall construct complex irreducible
characters of H.

Lemma 1. If a finite group G has an abelian normal subgroup
N such that G/N is cyclic, then any irreducible character of G is
mduced from a linear character of a subgroup L containing N.

Remark. This Lemma is also true even if G/N is abelian (see
Yamada [4, Theorem 1]).

Proof. Let y be an irreducible character of G and 2 a linear con-
stituent of the restriction y|y of yx to N. Let L be the inercia group
of 1:L={geG; =2}, where 2°(h)=2(9'hg) for any heN. By
Clifford’s theorem there exists an irreducible character 4 of L such
that y=6° (6° denotes the induced character) and ¢|y,=e2 for some
positive integer e. Since L/N is cyclic, we obtain e=1 (Feit [1,
(9.12)]), which shows that ¢ is linear, and the proof is complete.

Now a representation group H has a maximal abelian normal
subgroup {r,s). Since H/{r,s) is cyclic, we have the unique com-
position series over (r, 8}

{rys)=L,CcL,,C---CL,CH
where L, ={t*",r,s). Since |H/L,|=p™, it follows from Lemma 1
that H has a non-linear irreducible character of degree »™ induced
from a linear character 2 of L,, 1<m<n). Note that i(s) is a p™-th
root of unity, because D(L,,)=<{s").

Lemma 2. The induced character 2% is irreducible if and only
if A(s) is a primitive p™-th root of unity.

Proof. By Frobenius reciprocity theorem, we have

(#, ¥y = (2", 2)=p2: @, 2.
Hence 47 is irreducible if and only if 2™+ 2 for all integer #20 mod p™.
Since any element # of L, has the form h=t*"r/s* 0ZiZp™"—1,
0<7, k<p"—1), it follows from (5) that
(6) (h)=2mias)v  (G=0,1,---,p"—1).
Therefore 221 for all integer =0 mod p™ if and only if A(s) is a
primitive p™-th root of unity, which proves Lemma 2.

To determine irreducible characters of H, we define the normal

subgroups
Tm=<tpm, ”'pm’ S>, (m=1, 2: . ',1’&),
and put
T,=T,/{s™, (m=12,...,n).
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Then T,, is contained in L,, and T,, is abelian.

For each he T,, we denote by & the image of % under the natural
homomorphism T,,—T,.

Theorem 2. A class function y is an irreducible character of H
of degree p™ if and only if

_[0, (heT,)
) 0=\ enty, e T,
where p is o linear character of T, whose restriction to {3) is faithful.

Proof. Suppose that y is an irreducible character of H of degree
p™, then y is induced from a linear character 2 of L, and y vanishes
outside L,. For each h=t*"r's* ¢ L, we have from (6)

m—1
2 =23, ()"
Since A(s) is a primitive p™-th root of unity, it follows that
P! 6) ) — {0, (720 mod p™)
& @) ", (=0 mod p™),
hence
0, (heT,)
wd)= {pml(h), (heT,).
If we define a linear character g of T, by putting g(h)=2(h), then g
is faithful on (3), and
0, (heT,)
0 {p’"/z(ii), (heT,).

Conversely, let y be a class function defined by (7). Since D(L,,)
=(s"™yCT,, the linear character x of T, given by u(h)=p(h) is the
restriction of a linear character 1 of L,. Since 2z is faithful on (3),
A(s) is a primitive p™-th root of unity. It follows that A7 is irreducible
by Lemma 2 and is equal to y, which proves Theorem 2.

We describe the structure of T, of each group in Theorem 1.
Putting t,=t*", r,=7"", we have

T, =%, Ty 8).
Case 1. If p is odd or if p=2, n=2, then
in H,,
T = Bop X (Toy X8,
oy P = Z pnom,y (3= Zym,
in H,,
Tm: <io> X <7_”0>, §=7""",
oy =Zpnm, Py =Zy,

Case 2. If p=2, n=1, then
in H, and H,,

T,={53), (8)=2Z,

Corollary 1. The number of the irreducible characters of degree
p™ of a representation group H of Z,uX Z,. is
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P (p—Lyp~™.

Proof. By Theorem 2, this number is equal to the number of the
linear characters of T,, which are faithful on (8). Noting that there
exists a cyclic direct factor of T, which contains (), we can prove
that this number is equal to p**~(p—1)p-".

Now let H, H' be the two non-isomorphic representation groups
of Z,,XZ,.. We define a (set-theoretical) one-to-one onto mapping
from H={t,r,8) to H'={t/,7',8'>: If he H is written as h=tir's*,

hh =gk
where 0<4, 7, k<p~—1. By this mapping, a conjugacy clags C of H
corresponds to a conjugacy class C’ of H’ (see Proposition 1), thus we
have a one-to-one onto correspondence between the set of conjugacy
classes of H and the set of conjugacy classes of H’. Furthermore,
the subgroup 7T,=<{t*",r*",s) of H corresponds to the subgroup
T, =", r'*", &> of H'.

We say that the group H and H’ have the same character table if
there exists a one-to-one onto mapping from the set {y} of irreducible
characters of H to the set {y’} of irreducible characters of H’ which
satisfies the condition y'(C’)=yx(C) for any conjugacy class C and any
irreducible character .

Corollary 2. The two non-isomorphic representation groups of
Z X Zyn have the same character table if and only if n=1.

Proof. The mapping C—>C’ induces the one-to-one onto mapping
from T, to T, such that f,7, § corresponds to t},r;, s’ respectively,
for each m (m=1,2, --.,n). Let M, (resp. M,) be the set of linear
characters of T, (resp. T7,) which are faithful on (3> (resp. <&'>). By
Theorem 2, the groups H, H' have the same character table in the
above sense if and only if for each m there exists a one-to-one onto
mapping g—g from M, to M., such that z/(W)=p(h) for any he T,
and any ge M,. Itis easily seen that this happens only when n=1
and the corollary is proved.

Remark. The same argument can be applied to the case of
central extensions of Z,: X Z,. by a cyclic group Z,. contained in the
commutator subgroup. (n=m<10).
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