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77. Studies on Holonomic Quantum Fields. X

By Mikio SATO, Tetsuji MIWA, and Michio JIMBO
Research Institute of Mathematical Sciences, Kyoto University

(Communicated by K.Ssaku YOSIDA, M. J. A., Dec. 12, 1978)

In this series of articles, entitled "holonomic quantum fields", we
intend to develop an exact model theory of quantum fields. Thus far
we have expounded the subject in the simplest and most typical case
of 2-dimensional space-time. Let us. formulate here the mathematical
situation in a form applicable to any space-time dimensions..

Consider a classical scattering problem caused by a given external
field A(x). The associated scattering operator T= T[A] is then a ro-
tation in the space W of free wave functions.. The quantal scattering
is attributed to the corresponding Clifford element g e G(W) (or g(R)g-
e G(WW)), which we regard as. the field operator of an "extended ob-
ject" A(x). Our aim is. to show that the vacuum expectation value
r[T] of g, and further the operator g itself, is completely characterized
and controlled in the language of classical mathematics..

In this and the coming notes we shall perform the above program
in the case of 2-dimensional massless Dirac fields. The general frame-
work is presented in X- 1. By specializing the formulas in X- 1
we derive variational formulas for log r[T] regarded as a functional
of the external field A (X- 2) and also of the rotation T (XI- 1), both
in an exact and closed manner. We note that in this context the
Riemann-Hilbert problem arises more naturally as a 2-dimensional
massless field theory, rather than the 1-dimensional formulation given
in [1], [3]. Finally in XI- 2 we shall apply these results to give a
non-abelian extension of the SzegS’s theorem concerning the Toeplitz
determinant.

Application of the scheme developed here to higher dimensional
problems will be the theme of our subsequent publications.

1. Let W be an orthogonal vector space equipped with the inner
product (, }. Given a rotation T e O(W), let g be an element of the
Clifford group G(W) which induces T: T--T [2]. Then g(R)g-1
e G(WW) does not depend on the choice of g and is uniquely deter-
mined by T. Assuming dim W=N to be even, we fix a holonomic de-
composition W=VtV. The corresponding expectation values on
A(W) and on A(WW) are denoted by ( and ( w respectively,
so that ((q,2}w@w--(a}(a2}(a, 52 A(W)). Consider now the de-
composition of a rotation T and of T-
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( 1 ) T= Y-;Y_, T---Z1Z_ (Y=, Z= End (W))
satisfying (el. [2], p. 260)
(2) E_YE+-O, E+y_IE_--O

__+ + --0, E+Z+1_
Here E+ (resp. E_) denotes the projection operator onto V (resp. V).
The choice of Y, Z is. arbitrary within the replacement Y.CY,
ZC’Z., C, C’ being invertible and commutative with E,:. We set
3 ) +IT]-- Y=E_Y+--ZTE_Z_

y-IE Y +Z-EZ+ + +

Next choose a basis vi, ., v of W, and denote by J-((v, v),=i,...,,v,
K-((vv),=,..., the tables of inner product and of expectation
value, respectively. Note that E+--J-IK, E_-J-tK in this basis.
We put
( 4 R[T]_ (y;i_ y:i)(E+y_ _at_ E_Y/)J-

R[T-’]--(Z--Z:)(E+Z_ +E_Z+)J-.
Clearly the definitions. (3), (4) are independent of the choice of Y, Z+/-.

Theorem 1. We have
5 (g(R)g-)ww r[T]

Nr (g@g-1)--r[T] exp (p[T]/2)
where r[T], p[T] are given by the following formulas"
6 ) r[T]-- det (E+ / E_T) det (E+ / E_T-i)

-det (E+Y: +E_YT)Y_ det (E+Z-_ +E_Z)Z_
N N

p[T]- () v()’() +
j,= j,=

Here .(()),__,..., ----R[T], (," ()),__i,....--R[T and v1), v denote the

first and second copies of v in W(W respectively (] 1, ..., m).
The variation of r[T] as a functional of T is given by

( 7 ) 2 log r[T] trace T. [T].
These results are equally valid in the symplectic ramework,

provided that we replace J,E/,E_ by H--K--K, E’+--H-K,
--H- tK, respectively.

2. Now we shall discuss the massless theory in 2-dimensional
Minkowski space-time X--R. We use the following notations"
x_(_x-,x+), +_x_(+_xO+x)/2, dx__d(_x-)dx+, p__pO+__p, p.x
--px--pix--p+x--p-x+. Let W be the space of "wave functions."
w-(w, ..., w), namely m-tuples of functions on X" satisfying the
2-dimensional Weyl equation (the massless version of Dirac equation)

w(x)--O (]--1 m).(8) x+

We equip W with the inner product (w,

to make it an orthogonal space. Denote by V (resp. V) the subspace
of W consisting of w’s whose Fourier transforms (p/)2u(p-)
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=] dxw(x)e’ (]=1, ..., m) are supported on p/_>_0 (resp. p/_<_0).

We have then a holonomic decomposition W=VV. As in II- 1 [3]
we introduce an ideal element (x0) of W, whose ]-th component is.
given by 33(--x-+ x;). The tables of inner product and expectation
value in the basis {k(x0)} are the invariant delta functions, defined by
9 ) D(x--x’)--(((x), +k(Xf)))j,k=l,...,rt---’(--X DL x’-).I,,,

D / )(x x’) + D(-)(x x’)
1 iD(+)(x- x’)=((p(x):,(x’)}),=,...,-- I
27c x- + x’- + iO

1 --iD(-)(x x’) (<,(x’)r,/(x)>),,= ,,...,,-
2z --x- + x’---iO

where I is. the m m unit matrix. We shall also make use of the fol-
lowing Green’s functions,"

(10) D(x--x’)--((T(+(x),(x’))>),,=,...,,,,
=O(x/ x’/)D / (x x’) --O(x’/ x/)D-(x x’)

D* (x-- x’)--((T*(s(x),(x ))})j,k=l,...,?:t
=O(x/ x’/)D<-(x- x’) --O(x’/ x/)D / (x- x’)

Dret(x- x’)- O(x/ x’/)D(x x’)
Dav(x-- x’) --O(x’+ x +)D(x x’).

In (10) T(resp. T*) signifies the time ordered (resp. anti-time ordered)
Xa(2))" (r-l)product" T(p,(x) p,(x,)) fl(x() O(xO

(Xa(1)) PJa(r)(Xa(r))’ T*(+jl(Xl) PJr(xr)) E $aO(--xOa(1)-xOa(2)
(X(l>)...:s,(,,)(x,,<,.)), where the sum extends over0(--xOa(r_l) - Xa(r))ja(1)

permutation a of indices {1,..., r}, and eo-signature of a. These
D(--Da, +D(+functions (9), (10) are interrelated hrough D,--D,et--

D*--D,--D+--Da+D-. Note hat D represents the kernel
function of he projection opera,or E.

Consider now the Weyl equation with external source

(11) ( --A(x))w(x)-O.3x+

Here A(x) denotes a compactly supported, smooth m m matrix valued
function. We assume tA(x)--A(x). (The general case is reduced
to this, case by virtue of the inclusion of Lie algebras g(m)o(2m).)
A solution w(x) of (11) is, in one-to-one correspondence with its asym-
ptotic wave functions, w or Wont e W defined by

(12) w,, (x)-w(x)-f d"x’D. (x- x’)A(x’)w(xg.
out d adv

It is.easy to verify that the scattering operator T[A]" W-W, wwot,
induces a rotation in W. Explicitly it is. given by the multiplication
operator
(13) (T[A]wi)(x)--M[A](--x-).win(x)
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M[A](--x-)- ;...; d2xl" d2xnD(x-- xl)A(xl)Dret(Xl-- x2)A(x)

Dre(xn_l-- x)A(x)

A(--x-,x?). .A(--x-,x:).
Note that tM[A]-=M[A].

Theorem 2. The r-function r[T[A]] (which we denote by r[A])
corresponding to r[A] is given by
(14) 2 log r[A] =trace (log (1-DA) + log (1--DA)

--log (1--DtA)--log (1--DA))
1 dx trace ()(x, x; A)

where

(15) (F()(x, x’; A)=... dXl...dx_l

{De(x-- xl)A(xl) De(Xn_I-- x’)A(x’)
+ D*(x-- xl)A(xO... D*(x_-- x’)A(x’)

Dt(x xl)A(xl) Dt(x x’)A(x’)
D,(x x,)A(x) D,(x,_ x’)A(x’)}.

In (14) D, A, etc. are regarded as integral operators, with kernels
D(x-- x’), A(x)(-- x- + x’-)3(x/ x’/), etc. The crucial point is that
W)(x, x;A) is well defined, although individual terms in (15) are sin-
gular on the diagonal.

To obtain a closed expression for the variation 3 log r[A], we in-
a a D.troduce several Green’s functions G-D, D, D, or (11)

(16) ( 3 --A(x))G(x, x’)=/(--x- +x’-)(x+-x’+)I
0x+

with the following characteristic boundary conditions..
A(17) Dt(x, x’)--O for x+x+.
adv

(lS) D(x, x’), *D (x, x’)--*0 (I--x
(D,a V(D),,, e V, ,,,, e

A(D),,o,,, e V, (D*a),,o,t e V.
and (D*a)x,,out)and (D*a), (resp. (D),,ouHere, for fixed x’, (D),,,

denote elements of W which coincide with D(x, x’) and D (x, x’) in
the region x/((x+’ (resp. x/}}x’/), where the letters satisfy the free
equation (8). We set
(19) (x, x’; A)=D(x, x’) + D* (x, x’)

AD,,(x, x’) --D(x, x’).
Theorem 3. The restriction 1, is well defined, and we have

(20) 2 log r[A]= -[ dx trace A(x). r(x, x A).
J
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