63. On Equations Defining Abelian Varieties and Modular Functions

By Shoji Koizumi*)
Universität Bonn and University of Tsukuba
(Communicated by Kunihiko Kodarra, m. J. A., Oct. 12, 1978)

To a pair (z, e) of a point z of the Siegel upper half space \mathcal{H}_{n} of degree n and an n-square matrix e with coefficients in Z and $\operatorname{det} e \neq 0$, we can attach a complex torus $C /\langle z, e\rangle$ with the period lattice subgroup $\langle z, e\rangle$ of C^{n} generated by the column vectors of (z, e). For a vector $k=\binom{k^{\prime}}{k^{\prime \prime}} \in \boldsymbol{R}^{2 n}$, the theta function $\vartheta[k](z \mid x)$ is defined by

$$
\vartheta[k](z \mid x)=\sum_{r \in \mathbf{Z}^{n}} e\left(\frac{1}{2}^{t}\left(r+k^{\prime}\right) z\left(r+k^{\prime}\right)+{ }^{t}\left(r+k^{\prime}\right)\left(x+k^{\prime \prime}\right)\right),
$$

which is a holomorphic function of $(z, x) \in \mathcal{H}_{n} \times \boldsymbol{C}^{n}$. Given $\beta \in \boldsymbol{Z}_{+}$, $U\left(\beta^{t} e\right)$ denotes a complete set of representatives of $\beta^{-1 t} e^{-1} \boldsymbol{Z}^{n} \bmod \boldsymbol{Z}^{n}$. A map $\varphi^{(z)}$ from C^{n} to the projective space $\boldsymbol{P} \beta^{n \mid d e t e l-1}(C)$ defined by $x \mapsto\left(\cdots, \vartheta\left[\begin{array}{c}k^{\prime} \\ 0\end{array}\right](z \mid x), \cdots\right)_{k^{\prime} \in U\left(\beta^{t e)}\right.}$ induces a projective embedding of $C^{n} /\langle z, e\rangle$ if $\beta \geqslant 3$. The $\operatorname{Im}\left(\varphi^{(z)}\right)$ is an abelian variety, which is denoted by $A(z)$. The purpose of this note is to write down explicitly a system of equations defining $A(z)$ and to show that the set of quotients of coefficients of the equations generates the field of modular functions with respect to the principal congruence subgroup $\Gamma_{t_{e}}(\beta)$.

We shall indicate some definitions and notations. For a commutative ring R having the unity $1, M(n \times \alpha, R)$ (or $M(n, R)$, resp.) is the set of ($n \times \alpha$)-matrices (or n-square matrices) with coefficients in R; in particular, $M(n \times 1, R)$ is denoted by R^{n}. For a matrix $e \in \boldsymbol{M}(n, Z)$ with det $e \neq 0$, the paramodular group $\Gamma_{t_{e}}$ or the principal congruence subgroup $\Gamma_{t_{e}}(\beta)$ of level $\beta, \beta \in Z_{+}$, is defined, respectively, by $\Gamma_{t_{e}}$ $=\left\{\left.M \in \boldsymbol{M}(2 n, \boldsymbol{Z})\right|^{t} M\left(\begin{array}{cc}0 & -{ }^{t} e \\ e & 0\end{array}\right) M=\left(\begin{array}{cc}0 & -^{t} e \\ e & 0\end{array}\right)\right\} \quad$ or $\quad \Gamma_{t_{e}}(\beta)=\left\{M \in \Gamma_{t_{e}} \mid M\right.$ $\left.=1_{2 n}+M^{\prime}\left(\begin{array}{cc}e & 0 \\ 0 & { }^{t} e\end{array}\right), M^{\prime} \in \boldsymbol{M}(2 n, \boldsymbol{Z})\right\}$. When we write $k=\binom{k^{\prime}}{k^{\prime \prime}} \in \boldsymbol{R}^{2 n}, k^{\prime}$ are $k^{\prime \prime}$ are upper and lower halves of k in \boldsymbol{R}^{n}. For e (or β) as above, $U(e)$ (or $U(\beta)$) is a complete set of representatives of $e^{-1} \boldsymbol{Z}^{n}$ (or $\beta^{-1} \boldsymbol{Z}^{n}$) modulo \boldsymbol{Z}^{n}. On the other hand, the residue group $e^{-1} \boldsymbol{Z}^{n} / \boldsymbol{Z}^{n}$ and its character group are denoted, respectively, by $\tilde{U}(e)$ and $\tilde{U}^{*}(e)$. We put $\boldsymbol{e}(t)=\exp (2 \pi \sqrt{-1} t)$ for $t \in \boldsymbol{C}$.

[^0]More precise details and proofs will be discussed in a separate paper.

1. Theta relations of higher degree. Let α be an integer $\geqslant 2$ and let T be a matrix in $\boldsymbol{M}(\alpha, \boldsymbol{Z})$ defined by

$$
T=\left(\begin{array}{ccccrr}
1 & \alpha-1 & 0 & \cdots & 0 & 0 \tag{1.1}\\
1 & -1 & \alpha-2 & \cdots & 0 & 0 \\
1 & -1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & . & \vdots & \vdots \\
1 & -1 & -1 & \cdots & -1 & 1 \\
1 & -1 & -1 & \cdots & -1 & -1
\end{array}\right)
$$

If we write ${ }^{t} T^{-1}=T^{*}$, we have

$$
T^{*}={ }^{t} T^{-1}=\left(\begin{array}{cccccc}
\alpha^{-1} & \alpha^{-1} & 0 & \cdots & 0 & 0 \\
\alpha^{-1} & -\alpha^{-1}(\alpha-1)^{-1} & (\alpha-1)^{-1} & \cdots & 0 & 0 \\
\alpha^{-1} & -\alpha^{-1}(\alpha-1)^{-1} & -(\alpha-1)^{-1}(\alpha-2)^{-1} & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\alpha^{-1} & -\alpha^{-1}(\alpha-1)^{-1} & -(\alpha-1)^{-1}(\alpha-2)^{-1} & \cdots & 3^{-1} & 0 \\
\alpha^{-1} & -\alpha^{-1}(\alpha-1)^{-1} & -(\alpha-1)^{-1}(\alpha-2)^{-1} & \cdots & -6^{-1} & -2^{-1}
\end{array}\right) .
$$

For $\alpha-1$ vectors $l_{i}=\binom{l_{i}^{\prime}}{l_{i}^{\prime \prime}} \in \boldsymbol{R}^{2 n}$, a holomorphic function of $\left(z, y_{1}\right.$, $\left.\cdots, y_{\alpha-1}\right) \in \mathcal{H}_{n} \oplus\left(\underset{\oplus}{\alpha-1} C^{n}\right) \check{\boldsymbol{\Xi}}\left(l_{1}, \cdots, l_{\alpha-1}|z| y_{1}, \cdots, y_{\alpha-1}\right)$ is defined by

$$
\check{\Xi}\left(l_{1}, \cdots, l_{\alpha-1}|z| y_{1}, \cdots, y_{\alpha-1}\right)=\sum_{\substack{p_{i} \in U(i) \\
i=\alpha-1, \ldots, 2}} \vartheta\left[\begin{array}{c}
l_{1}^{\prime}-p_{\alpha-1} \\
l_{1}^{\prime \prime}
\end{array}\right]\left(\alpha(\alpha-1) z \mid y_{1}\right)
$$

$$
\begin{align*}
& \times \vartheta\left[\begin{array}{c}
l_{2}^{\prime}+p_{\alpha-1}-p_{\alpha-2} \\
l_{2}^{\prime \prime}
\end{array}\right]\left((\alpha-1)(\alpha-2) z \mid y_{2}\right) \cdots \vartheta\left[\begin{array}{c}
l_{\alpha-2}^{\prime}-p_{3}+p_{2} \\
l_{\alpha-2}^{\prime \prime}
\end{array}\right]\left(6 z \mid y_{\alpha-2}\right) \tag{1.2}\\
& \times \vartheta\left[\begin{array}{c}
l_{\alpha-1}^{\prime}+p_{2} \\
l_{\alpha-1}^{\prime \prime}
\end{array}\right]\left(2 z \mid y_{\alpha-1}\right) .
\end{align*}
$$

Then we have (Appendix in [2])

$$
\begin{align*}
& \prod_{i=1}^{\alpha} \vartheta\left[\begin{array}{l}
k_{i}^{\prime} \\
k_{i}^{\prime \prime}
\end{array}\right]\left(z \mid x_{i}\right) \tag{1.3}\\
&=\sum_{p \in U(\alpha)} \vartheta\left[\begin{array}{c}
l_{0}^{\prime}+p \\
l_{0}^{\prime \prime}
\end{array}\right](\alpha z \mid y) \check{\Xi}\left(l_{1}+\binom{p}{0}, l_{2}, \cdots, l_{\alpha-1}|z| y_{1}, \cdots, y_{\alpha-1}\right)
\end{align*}
$$

where $\quad\left(l_{0} l_{1} \cdots l_{\alpha-1}\right)=\binom{l_{0}^{\prime} l_{1}^{\prime} \cdots l_{\alpha-1}^{\prime}}{l_{0}^{\prime} l_{1}^{\prime \prime} \cdots l_{\alpha-1}^{\prime \prime}}=\binom{\left(k_{1}^{\prime} k_{2}^{\prime} \cdots k_{\alpha}^{\prime}\right) T^{*}}{\left(k_{1}^{\prime \prime} k_{2}^{\prime \prime} \cdots k_{\alpha}^{\prime \prime}\right) T}$ and $\left(y y_{1} \cdots y_{\alpha-1}\right)$ $=\left(x_{1} x_{2} \cdots x_{\alpha}\right) T$.

Let χ be a character in $\tilde{U}^{*}(\alpha)$. We put

$$
\begin{aligned}
& \check{\Xi}\left(\chi\left|l_{1}, \cdots, l_{\alpha-1}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right) \\
& \quad=\sum_{p \in U(\alpha)} \chi(-p) \check{\Xi}\left(l_{1}+\binom{p}{0}, l_{2}, \cdots, l_{\alpha-1}|z| y_{1}, \cdots, y_{\alpha-1}\right) .
\end{aligned}
$$

Then, under the same notations as in (1.3) we have

$$
\begin{align*}
& \sum_{p \in U(\alpha)} \chi(p) \prod_{i=1}^{\alpha} \vartheta\left[k_{i}+\binom{p}{0}\right]\left(z \mid x_{i}\right) \\
& \quad=\left(\sum_{p \in U(\alpha)} \chi(p) \vartheta\left[l_{0}+\binom{p}{0}\right](\alpha z \mid y)\right) \check{\Xi}\left(\chi\left|l_{1}, \cdots, l_{\alpha-1}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right) \tag{1.5}
\end{align*}
$$

Let ($k_{01}, k_{02}, \cdots, k_{0 \alpha}$) and ($k_{11}, k_{12}, \cdots, k_{1 \alpha}$) be two systems of vectors in $\boldsymbol{R}^{2 n}$. As in (1.3), we put

$$
\left(l_{j 0} l_{j 1} \cdots l_{j(\alpha-1)}\right)=\binom{l_{j j}^{\prime} l_{j 1}^{\prime} \cdots l_{j(\alpha-1)}^{\prime}}{l_{j 0}^{\prime \prime} l_{j 1}^{\prime \prime} \cdots l_{j(\alpha-1)}^{\prime \prime}}=\binom{\left(k_{j j}^{\prime} k_{j 1}^{\prime} \cdots k_{j \alpha}^{\prime}\right) T^{*}}{\left.k_{j 0}^{\prime \prime} k_{j 1}^{\prime \prime} \cdots k_{j \alpha}^{\prime \prime}\right) T}, \quad(j=0,1)
$$

and

$$
\left(y y_{1} \cdots y_{\alpha-1}\right)=\left(x_{1} x_{2} \cdots x_{\alpha}\right) T .
$$

If $l_{00}^{\prime} \equiv l_{10}^{\prime}\left(\bmod \alpha^{-1} Z^{n}\right)$ and $l_{00}^{\prime \prime}=l_{10}^{\prime \prime}$, then we have

$$
\begin{align*}
& \check{\Xi}\left(\chi\left|l_{11}, \cdots, l_{1(\alpha-1)}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right)\left(\sum_{p \in U(\alpha)} \chi(p) \prod_{i=1}^{\alpha} \vartheta\left[k_{0 i}+\binom{p}{0}\right]\left(z \mid x_{i}\right)\right. \\
&= \chi\left(l_{10}^{\prime}-l_{00}^{\prime}\right) \check{\Xi}\left(\chi\left|l_{01}, \cdots, l_{0(\alpha-1)}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right) \tag{1.6}\\
& \times\left(\sum_{p \in U(\alpha)} \chi(p) \prod_{i=1}^{\alpha} \vartheta\left[k_{1 i}+\binom{p}{0}\right]\left(z \mid x_{i}\right) .\right.
\end{align*}
$$

In particular we consider this formula (1.6) in the case where $k_{j 1}^{\prime \prime}=k_{j 2}^{\prime \prime}=\cdots=k_{j \alpha}^{\prime \prime}=0, j=0,1$, and $x_{1}=x_{2}=\cdots=x_{\alpha}=x$. Under this assumption, we have $l_{j 0}^{\prime \prime}=\cdots=l_{j(\alpha-1)}^{\prime \prime}=0$ and $y_{1}=\cdots=y_{\alpha-1}=0$. Thus we put

$$
\begin{equation*}
\Xi\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| z\right)=\check{\Xi}\left(\left.\chi\left|\binom{l_{1}^{\prime}}{0}, \cdots,\binom{l_{\alpha-1}^{\prime}}{0}\right| z \right\rvert\, 0, \cdots, 0\right) \tag{1.7}
\end{equation*}
$$

for $\chi \in \tilde{U}^{*}(\alpha)$ and $\left(l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right) \in \boldsymbol{M}(n \times(\alpha-1), \boldsymbol{R})$.
After suitable substitutions we have a formula containing $\boldsymbol{E}\left(\chi\left|l_{j 1}^{\prime}, \cdots, l_{j(\alpha-1)}^{\prime}\right| z\right) \quad$ instead \quad of $\quad \check{E}\left(\chi\left|l_{j 1}, \cdots, l_{j(\alpha-1)}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right)$, ($j=0,1$), which is a special case of the formula (1.6).
2. Equations defining the abelian variety $A(z)$. Now, besides $e \in M(n, Z)$ with det $e \neq 0$ we fix two integers $\beta \geqslant 3$ and $\alpha>1$ such that β is divisible by α. We also fix a complete set $U\left(\beta^{t} e\right)$ of representatives once for all. Let $\left\{X\left(\tilde{k}^{\prime}\right) \mid k^{\prime} \in U\left(\beta^{t} e\right)\right\}$ be a set of independent indeterminates, bijectively corresponding to $\tilde{U}\left(\beta^{t} e\right)$, where \tilde{k}^{\prime} is the congruence class determined by $k^{\prime} \in U\left(\beta^{t} e\right)$. ($\left.\cdots, X\left(\tilde{k}^{\prime}\right), \cdots\right)$ can be considered as the coordinate variables of the ambient projective space of $A(z)$, which is the projective embedding of the complex torus $C^{n} /\langle z, e\rangle$ by $x \mapsto\left(\cdots, \vartheta\left[\begin{array}{c}k^{\prime} \\ 0\end{array}\right](\beta z \mid \beta x), \cdots\right)$.

For \tilde{l}^{\prime} or $\left(\tilde{l}^{\prime}, \chi\right), \tilde{l}^{\prime} \in \tilde{U}\left(\beta^{t} e\right)$ and $\chi \in \tilde{U}^{*}(\alpha)$, a set $L\left(\tilde{l}^{\prime}\right)$ of indices or a set $F\left(\chi, \tilde{l}^{\prime}\right)$ of holomorphic functions on \mathcal{H}_{n} are defined respectively by

$$
\begin{equation*}
L\left(\tilde{l}^{\prime}\right)=\left\{\left(k_{1}^{\prime}, \cdots, k_{\alpha}^{\prime}\right) \mid k_{i}^{\prime} \in U\left(\beta^{t} e\right), i=1, \cdots, \alpha ; \sum_{i=1}^{\alpha} \tilde{k}_{i}^{\prime}=\tilde{l^{\prime}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{align*}
F\left(\chi, \tilde{l}^{\prime}\right)= & \left\{\boldsymbol{E}\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| \beta z\right) \mid\left(l_{1}^{\prime} \cdots l_{\alpha-1}^{\prime}\right)=\left(k_{1}^{\prime} \cdots k_{\alpha}^{\prime}\right) T_{1}^{*},\right. \tag{2.2}\\
& \left.\left(\tilde{k}_{1}^{\prime}, \cdots, \tilde{k}_{\alpha}^{\prime}\right) \in L\left(\tilde{l^{\prime}}\right)\right\}
\end{align*}
$$

where T_{1}^{*} is the $\alpha \times(\alpha-1)$-matrix obtained from T^{*} by excluding the first column.
$\left(k_{j 1}^{\prime}, \cdots, k_{j \alpha}^{\prime}\right)$ and $\left(l_{j 0}^{\prime}, \cdots, l_{j(\alpha-1)}^{\prime}\right)$ being as in (1.6), for a triple $\left(\chi,\left(\tilde{k}_{0 i}^{\prime}\right)_{1 \leqslant i \leqslant \alpha},\left(\tilde{k}_{1 i}^{\prime}\right)_{1 \leqslant i \leqslant \alpha}\right)$ such that $\left(k_{0 i}^{\prime}\right)$ and $\left(k_{1 i}^{\prime}\right)$ belong to the same $L\left(\tilde{l}^{\prime}\right)$ for some $\tilde{l}^{\prime} \in \tilde{U}\left(\beta^{t} e\right)$, we define an α-form (α-homogeneous polynomial) in variables $\{X(\tilde{k})\}_{\tilde{k} \in \tilde{U}\left(\beta t_{e}\right)}$:

$$
\begin{align*}
P\left(\chi\left|\left(\tilde{k}_{0 i}^{\prime}\right),\left(\tilde{k}_{1 i}^{\prime}\right)\right| X\left(\tilde{k}^{\prime}\right)\right)= & \Xi\left(\chi\left|l_{11}^{\prime}, \cdots, l_{1(\alpha-1)}^{\prime}\right| \beta z\right)_{p \in U(\alpha)} \chi(p) \prod_{i=1}^{\alpha} X\left(\widetilde{\left.k_{0 i}^{\prime}+p\right)}\right. \\
& -\chi\left(l_{10}^{\prime}-l_{00}^{\prime}\right) \Xi\left(\chi\left|l_{01}^{\prime}, \cdots, l_{0((\alpha-1)}^{\prime}\right| \beta z\right) \tag{2.3}\\
& \times \sum_{p \in U(\alpha)} \chi(p) \prod_{i=1}^{\alpha} X\left(\kappa_{1 i}^{\prime}+p\right) .
\end{align*}
$$

Furthermore, we define a set $I(z)$ of polynomials by

$$
\begin{align*}
I(z)= & \left\{P\left(\chi \mid \tilde{k}_{i 0}^{\prime}\right),\left(\tilde{k}_{1 i}^{\prime}\right) \mid X\left(\tilde{k}^{\prime}\right)\right) \mid \chi \in \tilde{U}^{*}(\alpha),\left(k_{0 i}^{\prime}\right) \text { and }\left(k_{1 i}^{\prime}\right) \in L\left(\tilde{l}^{\prime}\right), \tag{2.4}\\
& \left.\tilde{l}^{\prime} \in \tilde{U}\left(\beta^{t} e\right)\right\},
\end{align*}
$$

and for a point $z_{0} \in \mathcal{H}_{n}, I\left(z_{0}\right)$ is the set of α-forms in $C\left[\left\{X\left(\tilde{k}^{\prime}\right)\right\}_{\tilde{k}^{\prime} \in \tilde{U}\left(\beta^{t} e\right)}\right]$ obtained from $I(z)$ through substituting z by z_{0}.

Then our theorem is formulated in the following way:
Theorem. (0) If we substitute $\left(X\left(\tilde{k}^{\prime}\right)\right)$ by $\left(\vartheta\left[\begin{array}{c}k^{\prime} \\ 0\end{array}\right](\beta z \mid \beta x)\right)$ in $P\left(\chi\left|\left(\tilde{k}_{0 i}^{\prime}\right),\left(\tilde{k}_{1 i}^{\prime}\right)\right| X\left(\tilde{k}^{\prime}\right)\right)$, it vanishes identically as a function of (z, x) $\in \mathcal{H}_{n} \times \boldsymbol{C}^{n}$.
(I) For an arbitrary $\left(\chi, \tilde{l}^{\prime}, z_{0}\right) \in \tilde{U}^{*}(\alpha) \times \tilde{U}\left(\beta^{t} e\right) \times \mathcal{H}_{n}$, there is a function $E\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| \beta z\right)$ in $F\left(\chi, \tilde{l}^{\prime}\right)$, which does not vanish at z_{0}.
(II) Given $z_{0} \in \mathcal{H}_{n}$, the space of α-forms in $\boldsymbol{C}\left[\left\{X\left(\tilde{k}^{\prime}\right)\right\}_{\left.\tilde{k}^{\prime} \in \tilde{U}_{\left(\beta \mathcal{R}^{\prime}\right)}\right]}\right]$ vanishing on $A\left(z_{0}\right)$ is spanned by $I\left(z_{0}\right)$.
(III) The abelian variety $A\left(z_{0}\right)$ is the common zero set of $I\left(z_{0}\right)$.
(IV) The quotient of two functions in an $F\left(\chi, \tilde{l}^{\prime}\right)$, whose denominator does not identically vanish, is a modular function with respect to $\Gamma_{t_{e}}(\beta)$.
(V) The field of modular functions with respect to $\Gamma_{t_{e}}(\beta)$ is generated by

$$
\begin{aligned}
\left(\chi, \eta^{\prime}\right) \in \tilde{O}^{*}(\alpha) \oplus U\left(\beta_{e)}\right) & \left\{\Xi\left(\chi\left|l_{01}^{\prime}, \cdots, l_{0(\alpha-1)}^{\prime}\right| \beta z\right) / E\left(\chi\left|l_{11}^{\prime}, \cdots, l_{1(\alpha-1)}^{\prime}\right| \beta z\right)\right. \\
& \mid \Xi\left(\chi\left|l_{01}^{\prime}, \cdots\right| \beta z\right) \text { and } \Xi\left(\chi\left|l_{11}^{\prime}, \cdots\right| \beta z\right) \in F\left(\chi, \tilde{l}^{\prime}\right), \\
& \left.E\left(\chi\left|l_{11}^{\prime}, \cdots\right| \beta z\right) \neq 0\right\} .
\end{aligned}
$$

The assertions (0)-(III) are known in the case $\beta=4$ and $\alpha=2$ ([1], [3]). In the case $\beta=9$ and $\alpha=3$, the assertions (0)-(II) are proved in [5].
3. The Fourier expansion of $E\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| z\right)$. We can determine series expansions of the functions $\breve{\Xi}\left(l_{1}, \cdots,\left|l_{\alpha-1}\right| z \mid y_{1}, \cdots, y_{\alpha-1}\right)$ etc. explicitly, when ($l_{1}, \cdots, l_{\alpha-1}$) and ($y_{1}, \cdots, y_{\alpha-1}$) are given as in (1.3). Here we restrict ourselves to considering only the function $E\left(\chi \mid l_{1}^{\prime}, \cdots\right.$, $\left.l_{\alpha-1}^{\prime} \mid z\right)$.

Let α, ζ, K and O be, respectively, a prime number, a primitive α-th root of the unity, the field $\boldsymbol{Q}(\zeta)$ and the ring $Z[\zeta]$. Tr M means the trace of the matrix M, and on the other hand $\operatorname{tr}(\lambda), \lambda=\left(\begin{array}{c}\lambda_{(1)} \\ \vdots \\ \lambda_{(n)}\end{array}\right) \in K^{n}$, means the vector in Q^{n} whose coefficients are given by the trace of the element $\lambda_{(i)}$ in K, over \boldsymbol{Q}.

Given $\chi \in \tilde{U}^{*}(\alpha)$ and $\lambda \in K^{n}$, we define a holomorphic function $\xi(\chi, \lambda, z)$ on \mathscr{H}_{n} by

$$
\begin{equation*}
\xi(\chi, \lambda, z)=\sum_{\sigma \in \otimes^{n}} \chi\left(\alpha^{-1} \operatorname{tr} \sigma\right) e\left(\frac{1}{2} \operatorname{Tr}\left(\left(\operatorname{tr}\left((\lambda+\sigma)_{(i)}(\overline{\lambda+\sigma})_{(j,}\right)\right)_{(i, j)} z\right)\right), \tag{3.1}
\end{equation*}
$$

where $\left(\operatorname{tr}\left((\lambda+\sigma)_{(i)}(\overline{\lambda+\sigma})_{(j)}\right)\right)_{(i, j)}$ is a positive semi-definite symmetric matrix in $\boldsymbol{M}(n, Q)$.

For $\left(k_{1}^{\prime}, \cdots, k_{\alpha}^{\prime}\right) \in \boldsymbol{M}(n \times \alpha, \boldsymbol{Q})$, if we put $\lambda=k_{1}^{\prime}+k_{2}^{\prime} \zeta+\cdots+k_{\alpha}^{\prime} \zeta^{\alpha-1}$ and ($l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}$) as in (1.3), then we have

$$
\begin{equation*}
\xi\left(\chi, \lambda, \alpha^{-1} z\right)=\Xi\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| z\right) . \tag{3.2}
\end{equation*}
$$

Using $\xi\left(\chi, \lambda, \frac{\beta}{\alpha} z\right)$ instead of $\Xi\left(\chi\left|l_{1}^{\prime}, \cdots, l_{\alpha-1}^{\prime}\right| \beta z\right)$ we can formulate Theorem in the previous section. In this case the set $F\left(\chi, \tilde{l}^{\prime}\right)$ in (2.2) is replaced by

$$
\begin{equation*}
\mathscr{F}\left(\chi, \tilde{l}^{\prime}\right)=\left\{\left.\xi\left(\chi, \lambda \frac{\beta}{\alpha} z\right) \right\rvert\, \lambda \in \mathscr{U}\left(\beta^{t} e\right), \quad \operatorname{tr} \lambda^{\prime} \equiv-l^{\prime} \bmod \alpha \beta^{-1 t} e^{-1} Z^{n}\right\}, \tag{3.3}
\end{equation*}
$$

where $\mathscr{G}\left(\beta^{t} e\right)$ is a complete set of representatives of $\beta^{-1 t} e^{-1} \mathfrak{S}^{n} \bmod \mathfrak{O}^{n}$.

References

[1] J. Igusa: Theta functions. Die Grundlehren der Math. Wiss., bd. 194, Springer-Verlag, Berlin (1972).
[2] S. Koizumi: Theta relations and projective normality of abelian varieties. Amer. J. Math., 98, 865-889 (1976).
[3] D. Mumford: On the equations defining abelian varieties. I. Invent. Math., 1, 287-354 (1966).
[4] -: Varieties defined by quadratic equations. Questioni sulle Varieta Algebraiche, Corsi dal C.I.M.E., Edizioni Cremonese, Roma (1969).
[5] R. Sasaki: Analogs to Riemann relations in the case of degree three. Master thesis, Tokyo Univ. of Education (1974) (unpublished).
[6] T. Sekiguchi: On the cubics defining abelian varieties (to appear).
[7] C. L. Siegel: Moduln abelscher Funktionen. Gesammelte Abhandlungen, bd. III, Springer-Verlag, Berlin, pp. 373-435 (1966).
[8] -: Über Moduln abelscher Funktionen. Nachr. Akad. Wiss. in Göttigen. II, nr. 4, pp. 79-96 (1971).

[^0]: *) Supported in part by the S.F.B. of Universität Bonn.

