44. On Closed Subvarieties of Parabolic Type in Certain Quasi-Projective Spaces of Hyperbolic Type

By Seizō Furuno
Department of Mathematics, Gakushuin University, Mejiro, Tokyo 171
(Communicated by Kunihiko Kodaira, m. J. a., June 15, 1978)

Introduction. Recently S. Iitaka has developed a theory of logarithmic forms for algebraic varieties from proper birational geometric viewpoint and as an application he classified varieties of the form $V=\left(P^{n}-\right.$ a union of hyperplanes) by means of logarithmic Kodaira dimension $\bar{\kappa}$ [1]. The present note is based on these results. We study closed subvarieties Γ 's of V with $\bar{\kappa}(\Gamma)=0$ for V with $\bar{\kappa}(V)=n$. Recall that $\Gamma \simeq \boldsymbol{G}_{m}^{r}$, where \boldsymbol{G}_{m}^{r} denotes the r-dimensional algebraic torus. For our purpose, the maximal ones among V 's are useful.

1. Maximality. Let $V^{n}=\boldsymbol{P}^{n}(\boldsymbol{C})-L_{0} \cup \cdots \cup L_{q}$ where L_{j} 's are distinct hyperplanes in $P^{n}(C)$. The conditions in terms of coordinates for V^{n} with $\bar{\kappa}\left(V^{n}\right)=n$ can be described as follows. We may assume L_{j} is defined by $X_{j}=0,0 \leqq j \leqq n$. For the other equations, putting $s=q-n$, define $I_{1}, \cdots, I_{s} \subset\{0,1, \cdots, n\}$ by $I_{j}=\left\{i \mid\right.$ coef. of X_{i} of L_{n+j} is not zero. $\}$ Then renumbering j if necessary, the following conditions 0) and 1) are satisfied.
0) $I_{1} \cup \cdots \cup I_{s}=\{0,1, \cdots, n\}$
1) $I_{1} \cup \cdots \cup I_{j-1}$ is not disjoint to I_{j} for $2 \leqq j \leqq n$.

Proposition 1. Let $C a_{j}$ be the one dimensional subspace of \boldsymbol{A}^{n+1} corresponding dually to $L_{j}, 0 \leqq j \leqq q$. Let $\left(\boldsymbol{A}^{7}, A^{i}\right)$ denote a pair of proper subspaces of A^{n+1} with $A^{r} \cap A^{\delta}=\{0\}$. Then V^{n} satisfies the above conditions 0) and 1), if and only if the following (C) holds.
(C) $\boldsymbol{A}^{r} \cup \boldsymbol{A}^{8}$ dose not contain all of Ca_{j} 's for any $\left(\boldsymbol{A}^{\gamma}, \boldsymbol{A}^{8}\right)$.

Proposition 2. If V^{n} with $\bar{\kappa}\left(V^{n}\right)=n$ is maximal, we can impose on V^{n} the following additional conditions 2) and 3):
2) There are s numbers, $2 \leqq i(1)<\cdots<i(s)=n$, such that

$$
\begin{aligned}
& I_{1}=\{i \mid 0 \leqq i \leqq i(1)\} \\
& I_{j}-I_{1} \cup \cdots \cup I_{j-1}=\{i \mid i(j-1)<i \leqq i(j)\}, 2 \leqq j \leqq s
\end{aligned}
$$

3) Any two of I_{j} 's never have only one common element.

Proof of Proposition 2. 2) is obvious. Assume that $I_{j 1} \cap I_{j 2}=\{k\}$. Let $\boldsymbol{C} e_{0}, \cdots, \boldsymbol{C} e_{n}, \boldsymbol{C} a_{1}, \cdots, \boldsymbol{C} a_{s}$ be corresponding dually to $L_{0}, \cdots, L_{n}, L_{n+1}$, \cdots, L_{n+s}. Let A_{0} be the subspace of A^{n+1} spanned by $\left\{e_{i} \mid i \in I_{j 1} \cup I_{j 2}\right\}$. Since we are assuming that V^{n} is maximal, there is, by Proposition 1, ($\boldsymbol{A}^{r}, A^{8}$) such that $\left\{e_{0}, \cdots, \check{e}_{k}, \cdots, e_{n}, a_{1}, \cdots, a_{s}\right\} \subset A^{r} \cup A^{8}$. This also induces a splitting $\left(A_{0} \cap A^{r}, A_{0} \cap A^{i}\right)$ for $\left\{e_{i} \mid i \in I_{j_{1}} \cup I_{j 2}, i \neq k\right\} \cup\left\{a_{j 1}, a_{j 2}\right\}$ in
A_{0}. This is impossible.
Lemma. If V^{n} is of maximally hyperbolic type under 0), $\cdots, 3$) and moreover if $i(s-1)=n-1$, then

$$
V^{n-1}=\boldsymbol{P}^{n-1}(C)-L_{0} \cup \cdots \cup L_{n-1} \cup L_{n+1} \cup \cdots \cup L_{n+s-1}
$$

is also of maximally hyperbolic type.
Proposition 3. If V^{n} is of maximally hyperbolic type, then $1+q$ $\leqq 2 n$ holds. When the equality holds, V^{n} is uniquely determined by the equations, $L_{n+j}: X_{0}+X_{1}+X_{1+j}=0,1 \leqq j \leqq n-1$.

Proof. By the condition 2), we obtain the inequality. When $s=n-1$, we may assume L_{n+j} is as in the above for $1 \leqq j \leqq n-2$, by the lemma. By the condition 3), we deduce $I_{n-1}=\{0,1, n\}$, that is L_{n+s} : $X_{0}+c X_{1}+X_{n}=0, c \neq 0$. But unless $c=1, V^{n}$ is not maximal.

Remark. Maximal V^{n} 's do not have a parameter for $n \leqq 4$. But when $n=5, s=2, V^{n}$ is determined by $L_{8}: X_{0}+X_{1}+X_{2}+X_{3}+X_{4}=0, L_{7}$: $X_{0}+X_{1}+c X_{2}+c X_{3}+X_{5}=0$, where c is a complex parameter.
2. Γ of codimension 1 with $\bar{\kappa}(\Gamma)=0$.

Proposition 4. $V^{n}(n \geqq 3)$ with $\bar{\kappa}\left(V^{n}\right)=n$ has at most one closed subvariety Γ of codimension 1 with $\bar{\kappa}(\Gamma)=0$. When V^{n} has Γ as in the above, V^{n} is uniquely determined as the V^{n} in Proposition 3, if it is maximal.

Lemma. If $V^{n}(n \geqq 3)$ is of maximally hyperbolic type described under 0), $\cdots, 3$) and if $\# I_{j} \geqq 4$ for some $j, 1 \leqq j \leqq s$, then V^{n} has no Γ as in Proposition 4.

Proof of Lemma. Recall that Γ is a closed subvariety of \boldsymbol{G}_{m}^{n} $=\boldsymbol{P}^{n}(\boldsymbol{C})-L_{0} \cup \cdots \cup L_{n}=\operatorname{Spec} C\left[X_{1} / X_{0}, \cdots, X_{n} / X_{0}, X_{0} / X_{1}, \cdots, X_{0} / X_{n}\right]$ defined by $u_{1}=1$ for some new variables u_{1}, \cdots, u_{n} of the \boldsymbol{G}_{m}^{n} such that $X_{i} / X_{0}=a_{i} u_{1}^{s(i)} u_{2}^{\varepsilon(i 2)} \cdots u_{n}^{\varepsilon(i n)}, a_{i} \neq 0,1 \leqq i \leqq n$, with the matrix E of exponents in GL (n, \boldsymbol{Z}). We may assume $L_{n+1}: X_{0}+X_{1}+\cdots+X_{k}=0$, $k \geqq 3$. Since Γ lies on $\boldsymbol{G}_{m}^{n}-L_{n+1}$, the following indeterminate equation must hold with a unit of $C\left[u_{2}, \cdots, u_{n}, 1 / u_{2}, \cdots, 1 / u_{n}\right]$ in the right hand side:

$$
1+a_{1} u_{2}^{s(12)} \cdots u_{n}^{\varepsilon(1 n)}+\cdots+a_{k} u_{2}^{\varepsilon(k 2)} \cdots u_{n}^{\varepsilon(k n)}=c u_{2}^{\alpha(2)} \cdots u_{n}^{\alpha(n)} .
$$

But, since $E \in \operatorname{GL}(n, \boldsymbol{Z}), \#\{(\varepsilon(i 2), \cdots, \varepsilon(i n)) \mid 1 \leqq i \leqq k\}=k$ or $k-1$. Thus the equation has no solution E and a_{i} 's, if $k \geqq 3$.

Proof of Proposition 4. We may assume that V^{n} is maximal and satisfies 0), $\cdots, 3$). Then $\# I_{j}>2$ for all j. On the other hand, if V^{n} has Γ as in the statement, then by the lemma, $\# I_{j}<4$ for all j. Thus $\# I_{j}=3$ for all j. By this we deduce $s=n-1$, because V^{n} is maximal. Thus V^{n} is uniquely determined by Proposition 3. The V^{n} in Proposition 3 has actually only one Γ defined by $X_{0}+X_{1}=0$.
3. Example. We obtain a list of Γ 's for $n=4$, solving the indeterminate equations as in the lemma for Proposition 4. There are
only 3 maximal figures in this case.
$s=1, L_{8}: X_{0}+X_{1}+X_{2}+X_{3}+X_{4}=0$.

Γ	Aspect in V
\boldsymbol{G}_{m}^{3}	none
\boldsymbol{G}_{m}^{2}	15 pieces
$\boldsymbol{G}_{m}^{1}\left(\Varangle \boldsymbol{G}_{m}^{2}\right)$	A fibre of 25 fibred spaces

$s=2, L_{5}: X_{0}+X_{1}+X_{2}+X_{3}=0, L_{6}: X_{0}+X_{1}+X_{4}=0$.

\boldsymbol{G}_{m}^{3}	none
\boldsymbol{G}_{m}^{2}	A fibre of one fibred space
$\boldsymbol{G}_{m}^{1}\left(\Varangle \boldsymbol{G}_{m}^{2}\right)$	i) A fibre of 3 fibred spaces
	ii) A fibre of 12 fibred planes

$s=3, L_{5}: X_{0}+X_{1}+X_{2}=0, L_{6}: X_{0}+X_{1}+X_{3}=0, L_{7}: X_{0}+X_{1}+X_{4}=0$.

\boldsymbol{G}_{m}^{3}	only one
$\boldsymbol{G}_{m}^{2}\left(\Varangle \boldsymbol{G}_{m}^{3}\right)$	none
$\boldsymbol{G}_{m}^{1}\left(\Varangle \boldsymbol{G}_{m}^{3}\right)$	8 pieces

Acknowledgement. The author presents hearty thanks to Prof. S. Iitaka for his guidance.

References

[1] Iitaka, S.: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo, 23, 525-544 (1976).
[2] -: Algebraic Geometry III. Iwanami (1977) (in Japanese).

