167. Vector-space Valued Functions on Semi-groups. III

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Dec. 12, 1955)

In this Note, we shall define the Maak function and prove the existence for almost periodic functions. We shall use the terminologies in my Note [5], [7]. The method is due to W. Maak [3].

V. Fundamental theorem on almost periodic function

Let f(x) be an almost periodic function on a semi-group G with unit into a locally convex vector space E. For any nbd U of E, we have a minimal decomposition of G. The following propositions are clear.

Proposition 5.1. For any nbd U and an almost periodic function, G has a minimal decomposition.

Proposition 5.2. Let $\{A_i\}$ i=1, 2, ..., n be a minimal decomposition of G for any almost periodic function, then for a, b of G,

 $A_i \uparrow aGb \neq 0$ $(i=1, 2, \ldots, n).$

(For the details, see W. Maak [3].)

Theorem 12. For an almost periodic function on a semi-group, and any element x of G,

$$f(axb) \in U$$

implies

$$f(x) \in U$$
.

Proof. Let V be a nbd of E, and $\{A_i\}$ a minimal decomposition of G for U. From Proposition 5.2, we can find A_i and h'_i of G such that

$$x \in A_i, \qquad ah'_i b \in A_i.$$

Hence

$$f(x) = \{f(x) - f(ah'_ib)\} + f(ah'_ib) \in V + U$$

this shows $f(x) \in U$.

From Theorem 12, we have the following

Corollary 12.1. Let f(x) be almost periodic on a semi-group G. For any nbd U, let $\{A_i\}$ be a minimal decomposition of G. Then $a, b \in G$ and $x, y \in A_i$ implies

$$f(axb) - f(ayb) \in U$$

By Proposition 5.2 and Corollary 12.1, we have

Theorem 13. Let f(x) be almost periodic on a semi-group G. For any nbd U, and x, a, b of G, there is an element x' such that $f(cxd)-f(cax'bd) \in U$

for every c, d of G.

VI. The existence and the uniqueness of Maak function Let f(x, y) be a function on $G \times G$ into E.

Definition 5. f(x, y) is called Maak function on G, if

(18) f(x, y) is almost periodic of x for every fixed y.

(19) $f(x, 1) \equiv f(x)$ for all x.

(20) f(xa, ya) = f(x, y) for every x, y of G.

Let f(x) be an almost periodic function G. By Theorem 13, for a given nbd U and y of G, there is an element y' such that

$$f(cd) - f(cyy'd) \in U$$

for all c, d of G.

Let $f_{\mathcal{U}}(x, y) = f(x, y')$, then $f_{\mathcal{U}}(x, y)$ is almost periodic of x for each y.

Lemma. For given nbds U_1 , U_2 , $f_{U_1}(x, y) - f_{U_2}(x, y) \in U_1 + U_2$. The idea of the proof is due to W. Maak [3].

Proof. For U_1 , U_2 , there are y'_1 , y'_2 such that

 $f_{U_1}(x, y) = f(x, y'_1), \qquad f_{U_2}(x, y) = f(x, y'_2).$

By Theorem 13, for any nbd U, we can find x' such that

 $f(x, y'_1) - f(x, y'_2) = \{f(x, y'_1) - f(x'yy'_1)\}$

+ {
$$f(x'yy'_1) - f(x')$$
} + { $f(x') - f(x'yy'_2)$ } + { $f(x'yy'_2) - f(xy'_2)$ }

$$\in U + U + \{f(x'yy'_1) - f(x')\} + \{f(x') - f(x'yy'_2)\}.$$

Therefore, since $f(x'yy'_1) - f(x') \in U_1$, $f(x') - f(x'yy'_2) \in U_2$, we obtain $f_{U_1}(x, y) - f_{U_2}(x, y) \in U_1 + U_2$. Q.E.D.

Any metrisable and complete locally convex vector space is called (F)-space. The excellent treaties of (F)-space is in A. Grothendieck ([6], pp. 155–165).

Especially, if E is (F)-space, by Theorem 3 and Lemma, there is the limit of $f_{\mathcal{O}}(x, y)$ relative to U. Let f(x, y) be the limit function $f_{\mathcal{O}}(x, y)$ for $U \to 0$. Then f(x, y) is almost periodic of x for every y of G.

Theorem 14. For every almost periodic function f(x) on G to a (F)-space E, there exists the Maak function f(x, y) of the function f(x) on G. Such a function f(x, y) is unique.

Proof. We shall show that the function f(x, y) constructed above for a given almost periodic function f(x) is a Maak function on G. It is clear that f(x, y) satisfies the condition (18). To prove that $f(x, 1) \equiv f(x)$ for every x, let f(x, 1) = f(x, y') for nbd U, then $f_U(x, 1) - f(x) = f(xy') - f(x) \in U.$

For $U \rightarrow 0$, we have f(x, 1) = f(x). This shows the condition (19). We must prove f(xa, ya) = f(x, y). The idea of the proof is due to W. Maak [3]. For a nbd U, let

 $f_U(xa, ya) = f(xa(ya)'), \quad f_U(x, y) = f(xy'),$ then, we have, by Theorem 13

$$\begin{array}{l} f(xa(ya)') - f(xy') \\ = \{f(xa(ya)') - f(x'ya(ya)')\} + \{f(x'ya(ya)') - f(x')\} \\ + \{f(x') - f(x'yy')\} + \{f(x'yy') - f(xy')\} \\ \in U + U + \{f(x'ya(ya)') - f(x')\} + \{f(x') - f(x'yy')\} \\ \in U + U + U + U. \end{array}$$

Hence, we have

 $f_U(xa, ya) - f_U(x, y) \in U + U + U + U.$

This shows f(xa, ya) = f(x, y). On the uniqueness, let $f_1(x, y)$, $f_2(x, y)$ be two Maak functions for f(x), then (21) $f_i(xy, y) = f_i(x, 1) = f_i(x)$ (i=1, 2). It is easily seen from (21) that $f_1(x, y) = f_2(x, y)$.

References

- [6] A. Grothendieck: Théorie des espaces vectoriels topologiques, San Paulo (1954).
- [7] K. Iséki: Vector-space valued functions on semi-groups. II, Proc. Japan Acad., 31, 152–155 (1955).