686 [Vol. 31,

164. On Countably Paracompact Spaces

By Fumie ISHIKAWA

Osaka Woman's University, Osaka

(Comm. by K. Kunugi, M.J.A., Dec. 12, 1955)

This note will give a characterization of a countably paracompact space, i.e. a topological space X which has a locally finite refinement for every countable open covering.

Theorem: In order that a topological space X be countably paracompact it is necessary and sufficient that:

A. If a decreasing sequence $\{F_i\}$ of non empty closed sets F_i with vacuous intersection is given, then there exists a decreasing sequence $\{G_i\}$ of open sets such that their closure \overline{G}_i have a vacuous intersection and $G_i \supset F_i$.

Proof. If X is a countably paracompact space and given $\{F_i\}$, then

 $\{X-F_i\}$ is a countable open covering of X, therefore it has a locally finite refinement \mathfrak{V} . For each open set W of \mathfrak{V} let g(W) be the first $X-F_i$ containing W, and let V_i be the union of all W for which $g(W)=X-F_i$. Then V_i is open and $V_i\subset X-F_i$, $\{V_i\}$ is a locally finite covering of X.

Put:
$$G_i = \sum_{n=i+1}^{\infty} V_n$$
. Then G_i is open,
 $G_i \supset X - (V_1 + \cdots + V_i) \supset X - (X - F_i) = F_i$,

hence $G_i \supset F_i$.

For every point x of X there exists a neighborhood u(x) such that it meets only a finite number of V_i , since $\{V_i\}$ is a locally finite. Therefore there exists an i such that $u(x) \cap \sum_{n=i+1}^{\infty} V_n = 0$, that is, $x \in \overline{G}_i$. Accordingly $\pi \overline{G}_i = 0$.

Conversely let X be a space with the condition A, and let $\{U_i\}$ be a given countable open covering of X.

Put: $F_i = X - \sum_{n=1}^{i} U_n$. Then by the condition A there exist open sets G_i such that $G_i \supset F_i$,

$$G_1 \supset G_2 \dots$$
 and $\pi \overline{G}_i = 0$.

Put: $X-G_i=E_i$. Then E_i is obviously closed and $E_i\subset\sum_{n=1}^i U_n$.

Finally put: $V_i = U_i - E_{i-1}$. Then V_i is clearly open and $V_i \subset U_i$. Moreover, since $V_i = U_i - E_{i-1} \supset U_i - \sum_{n=1}^{i-1} U_n$, we have $\sum_{i=1}^{\infty} V_i \supset \sum_{i=1}^{\infty} (U_i - \sum_{n=1}^{i-1} U_n) = \sum_{i=1}^{\infty} U_i = X$, thus $\{V_i\}$ is a refinement of $\{U_i\}$. To each point x of X, we choose the first i such that $x \in \overline{G}_i$. Then there exists a

neighborhood u(x) of x such that $u(x) \cap G_i = 0$, hence $u(x) \subset E_i$. Therefore $u(x) \cap V_{i+j} = 0$ $j = 1, 2, \ldots$, thus u(x) meets a finite number of V_i . Therefore $\{V_i\}$ is a locally finite covering of X. X is thus proved to be countably paracompact.

Corollary: In order that each countable open covering of X have a point finite refinement, it is necessary and sufficient that, if a decreasing sequence $\{F_i\}$ of non empty closed sets with vacuous intersection is given, then there exists a decreasing sequence $\{G_i\}$ of open sets with vacuous intersection and $G_i \supset F_i$. The proof runs exactly as above. Instead of a neighborhood u(x) of x we have only to consider the point x itself.

Hence the two spaces are equivalent in normal space.