No. 107

155. On a Theorem of N. Jacobson

By Hisao Tominaga

Department of Mathematics, Okayama University, Japan (Comm. by Z. SUETUNA, M.J.A., Dec. 12, 1955)

Recently in his paper [2] N. Jacobson proved the following: If R' is a division ring of characteristic ± 2 which is finite over its center Z' and a division ring R contains R' and has left dimensionality $[R:R']_l=2$ then R is Galois over R'.

In this note we shall extend this result to simple rings.

If R is a *simple ring* (i.e. a primitive ring with minimum condition) then the length of the composition series of the R-module R is denoted by [R]. In general, for a finitely generated unitary left R-module M, the length of the composition series of the R-module M is denoted by $[M|R]_t$. As is well known, M possesses a linearly independent R-basis if and only if [R] divides $[M|R]_t$ and the dimensionality $[M:R]_t = [M|R]_t/[R]$.

In the below, that R' is a simple subring of a simple ring R will mean that the subring R' is simple and the identity element of R' is the same with that of R. And R will be said to be *Galois* over R' if 1) R' is an invariant subring of some automorphism group \mathfrak{G} of R, 2) $[\mathfrak{G}:\mathfrak{F}]<\infty$, where \mathfrak{F} is the totality of inner automorphisms in \mathfrak{G} , 3) V(R'), the centralizer of R' in R, is simple and finite over Z (cf. [4]).

We set first the following

Lemma. Let R be a simple ring, R' a simple subring of R, Z, and Z' the centers of R and R' respectively. If $[R \mid R']_i < \infty$ and $[R':Z'] < \infty$ then $[R:Z] < \infty$. Conversely, if $[R:Z] < \infty$ then $[R':Z'] \le [R:Z]$.

Proof. Let $[R':Z']=g^2$, $[R|R']_i=d$. Then [R:Z']=gd. If $\mathfrak L$ denotes the Z'-linear transformation ring of the left Z'-module R then $\mathfrak L$ contains R_r , all right multiplications by elements of R, and $\mathfrak L$ is isomorphic to $(Z')_{ga}$, the ring of $gd \times gd$ matrices over the commutative field Z'. Since, in $(Z')_{ga}$, the polynomial identity $[x_1,\ldots,x_{2ga}]=\sum \pm x_{i_1}\ldots x_{i_{2ga}}=0$ holds, where the summation runs over all permutations of $(1,\ldots,2gd)$ and the sign + and - according as the permutation is even or odd (see [1]), $[x_1,\ldots,x_{2ga}]=0$ in R_r , whence also in R. As R is simple, by Theorem 1 of [3], R is of finite rank over Z. By making use of the same method as in the proof of Theorem 1 of [2], we shall obtain the last part.

Now we can extend Jacobson's theorem to simple rings as follows:

Theorem. Let R be a simple ring, R' a simple subring of R, Z, and Z' the centers of R and R' respectively. If $[R:R']_i=2$, [R':Z'] $< \infty$ and the characteristic of $Z' \neq 2$, then R is Galois over R'.

Proof. Our lemma shows that $\lceil R:Z \rceil < \infty$. We distinguish two cases: I. $R' \supseteq Z$. It is well known that V(V(R')) = R' and V(R') is simple. Since each element of a simple ring is represented as a sum of regular elements in the ring, R' is the invariant subring of the inner automorphisms determined by all regular elements of V(R'). Clearly R is Galois over R'. II. $R' \supseteq Z$. Let $t \in Z \setminus R'$. properly contains R' and it is a two-sided R'-module. To be easily verified $[R'+R't \mid R']_t = 2[R']$ and $R'+R't = R' \oplus R't = R$. $R' \cap R't \neq 0$, then as $R' \cap R't$ is a two-sided R'-module contained in R' and R't, it has to coincide with R't as well as R'. But this is a contradiction. Thus we obtain $t^2=a_1t+a_2$ for some a_i in R'. Since t and t^2 are in Z, this gives $(aa_1)t + aa_2 = (a_1a)t + a_2a$ for each a in R'. Hence $aa_i = a_i a$ and so that a_i are in Z'. Since R = R' + R'twhere t belongs to Z, it is clear that $Z'=R' \cap Z$. Hence a_i are in Z. We may replace t by $u=t-\frac{1}{2}a_1$ and obtain $u^2=c\in Z$ and $R=R'\oplus R'u$. For $p, q \in R'$, the mapping $p+qu \rightarrow p-qu$ is an automorphism of R whose set of invariants is R'. Moreover, there holds that V(R')=V(R'Z)=V(R)=Z. Hence R is Galois over R'.

Remark. In part II of the above proof, it is easily seen that R is the Kronecker product over Z' of R' and a quadratic extension of Z'.

References

- [1] A. S. Amitsur and J. Levitzki: Minimal identities for algebras, Proc. Amer. Math. Soc., 1, 449-463 (1950).
- [2] N. Jacobson: A note on two dimensional division ring extensions, Amer. J. Math., 77, 593-599 (1955).
- [3] I. Kaplansky: Rings with a polynomial identity, Bull. Amer. Math. Soc., 54, 575-580 (1948).
- [4] T. Nakayama: Galois theory of simple rings, Trans. Amer. Math. Soc., 73, 276-292 (1952).