51. Inversive Semigroups. III

By Miyuki YAMADA

Shimane University and Sacramento State College (Comm. by Kinjirô Kunugi, M.J.A., March 12, 1965)

§1. Introduction. This paper is the continuation of the previous papers [8] and [9].

A semigroup G is said to be regular if it satisfies the following condition:

(C) For any element a of G, there exists an element x such that axa=a.

For example, inversive semigroups introduced by [8] are regular.

Now, consider the identity

(P) $x_1x_2x_3\cdots x_n = x_{p_1}x_{p_2}x_{p_3}\cdots x_{p_n}$,

where $(p_1, p_2, p_3, \dots, p_n)$ is a non-trivial permutation of $(1, 2, 3, \dots, n)$. Such an identity is called a *permutation identity*. If (P) is

valid for any elements $x_1, x_2, x_3, \dots, x_n$ of a semigroup M, then we shall say that *M* satisfies the permutation identity (P). For example, $commutativity \ x_1x_2=x_2x_1 \ and \ normality \ x_1x_2x_3x_4=x_1x_3x_2x_4 \ are \ clearly$ permutation identities. A semigroup satisfying commutativity x_1x_2 x_2x_1 is usually called a commutative semigroup. Similarly, we shall say that a semigroup is normal if it satisfies normality $x_1x_2x_3x_4=$ $x_1x_2x_2x_4$. It is clear that any group satisfying a permutation identity is commutative. Further, we shall show later that any inverse semigroup introduced by Vagner [5] under the name "generalized group" is commutative if it satisfies a permutation identity. However, a regular semigroup satisfying a permutation identity is not necessarily commutative, and is sometimes quite different from commutative semigroups. This is easily seen from the fact that a rectangular band R is a regular semigroup satisfying normality, but any two different elements of R do not commute. Decial kinds of regular semigroups satisfying permutation identities have been studied by many papers (e.g., Clifford [1], Preston [3], Clifford & Preston [2], Thierrin [4], the author [6], [8], [9] and Kimura & the author [10]). Especially, Clifford [1] and the author [7] completely determined the structure of commutative inversive semigroups and gave an explicit description of a method of constructing all possible commutative inversive semigroups. On the other hand, Kimura & the author [10] clarified the structure of bands satisfying various

¹⁾ See Clifford and Preston [2], p. 26.

permutation identities. In particular, it was proved that any band satisfying a permutation identity satisfies normality. And a structure theorem for normal bands was also given by [10]. Further, the author [8] recently clarified the structure of normal inversive semigroups by use of the structure theorem for normal bands:

Structure theorem for normal inversive semigroups. A semigroup G is isomorphic to the spined product of a commutative inversive semigroup A and a normal band B if and only if it is normal and inversive. Further, in this case the set of all idempotents of G is a subband of G and isomorphic to B.²⁾

The main purpose of this paper is to present a theorem which shows that any regular semigroup satisfying a permutation identity is necessarily a normal inversive semigroup. Also, one further theorem will be given to clarify the relation between several conditions on semigroups. All notations and terminology should be refered to [8] and [10]. The proofs are almost omitted and will be given in detail elsewhere.

§2. Regular semigroups satisfying permutation identities. Let S be a regular semigroup satisfying the permutation identity (P). Since S is regular, the set of all idempotents of S is not empty. We shall denote it by I.

Then, we can easily prove the following lemmas by simple calculation.

Lemma 1. I is a normal subband of S.

Lemma 2. S is an inversive semigroup.

Since S is inversive and I is a normal band, by Corollary 1 of [8] S is (N)-inversive and isomorphic to the spined product of a (C)-inversive semigroup C and the normal band $I: C \infty I(\Gamma) \cong S$. Let $C \sim \sum \{C_\gamma : \gamma \in \Gamma\}$, $I \sim \sum \{I_\gamma : \gamma \in \Gamma\}$ be the structure decompositions of C and I respectively. Then, it is easily seen that each C_γ and each I_γ are a group and a rectangular band respectively. And the structure decomposition of $C \infty I(\Gamma)$ is $C \infty I(\Gamma) \sim \sum \{C_\gamma \times I_\gamma : \gamma \in \Gamma\}$. Since S satisfies (P), each C_γ also satisfies (P). Therefore, each C_γ is a group satisfying (P), and hence C_γ is commutative.

Further, this result can be extended to the following lemma.

Lemma 3. C is a commutative inversive semigroup.

From the above-mentioned results, S is isomorphic to the spined product of a commutative inversive semigroup and a normal band. Hence, by the structure theorem for normal inversive semigroups the semigroup S is normal and inversive. Conversely, it is obvious that any normal inversive semigroup is a regular semigroup satisfying

²⁾ For the definition of the spined product of semigroups, see the author [8].

the permutation identity $x_1x_2x_3x_4 = x_1x_3x_2x_4$.

Therefore, we have

Theorem 1. A regular semigroup satisfying a permutation identity is isomorphic to the spined product of a commutative inversive semigroup and a normal band. Accordingly, it is a normal inversive semigroup. Conversely, any normal inversive semigroup is a regular semigroup satisfying a permutation identity.

Let P_1 and P_2 be two permutation identities. We shall say that P_1 implies P_2 on semigroups of type T if every semigroup having type T satisfies P_2 whenever it satisfies P_1 . In [10] the author has shown that any permutation identity implies normality on bands. This result can be extended to the following corollary to Theorem 1.

Corollary. Any permutation identity implies normality $x_1x_2x_3x_4 = x_1x_3x_2x_4$ on regular semigroups.

Finally, we shall show one further theorem which can be proved by use of the above-mentioned theorem, the paper [8] of the author and Theorem 4.3 of Clifford & Preston [2].

Theorem 2. For a semigroup M satisfying a permutation identity, the following conditions are equivalent:

- (1) M is regular.
- (2) M is left regular and right regular.
- (3) M is inversive.
- (4) M is strictly inversive.
- (5) M is (N)-inversive.
- (6) M is normal and inversive.
- (7) M is the union of (commutative) groups.
- (8) M is a semilattice of (R)-inversive semigroups.
- (9) M is a (normal) band of (commutative) groups.
- (10) M is isomorphic to the spined product of a (normal) band and a (C)-inversive semigroup.
- (11) M is isomorphic to the spined product of a (normal) band and a commutative inversive semigroup.

Let K be an inverse semigroup satisfying a permutation identity. Since K is of course regular, by (11) of Theorem 2 the semigroup K is isomorphic to the spined product of a commutative inversive semigroup A and a band $B: K \cong A \otimes B$ (Ω). Since the set of idempotents of K is commutative, B is also commutative. Therefore, $B \cong \Omega$, and hence $K \cong A$. Thus, K is commutative.

Consequently, we have

Corollary. An inverse semigroup satisfying a permutation identity is commutative.

References

- [1] A. H. Clifford: Semigroups admitting relative inverses. Annals of Math., 42, 1037-1049 (1941).
- [2] A. H. Clifford and G. B. Preston: Algebraic theory of semigroup. Mathematical surveys no. 7, Amer. Math. Soc. (1961).
- [3] G. B. Preston: Inverse semi-groups. J. London Math. Soc., 29, 396-403 (1954).
- [4] G. Thierrin: Demi-groupes inversés et rectangulaires. Acad. Roy. Belg. Bull Cl. Sci., 41, 83-92 (1955).
- [5] V. V. Vagner: Generalized groups. Doklady Akad. Nauk. SSSR (N.S), 84, 1119-1122 (1952).
- [6] M. Yamada: A note on middle unitary semigroups. Kōdai Math. Sem. Rep., 7, 49-52 (1955).
- [7] —: Compositions of semigroups. Kōdai Math. Sem. Rep., 8, 107-111 (1956).
- [8] —: Inversive semigroups. I. Proc. Japan Acad., 39, 100-103 (1963).
- [97] —: Inversive semigroups. II. Proc. Japan Acad., 39, 104-106 (1963).
- [10] M. Yamada and N. Kimura: Note on idempotent semigroups. II. Proc. Japan Acad., 34, 110-112 (1958).