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48. On the Ranges of the Increasing Mappings

By Sadayuki YAMAMURO™
(Comm. By Kinjiré KUNuUGI, M.J.A., March 12, 1965)

Let E be a real Banach space, G be an open subset and G be
the closure of G. In [3] (ef. [4] and [5]), we gave the following
definitions:

A mapping f: G—E is said to be (8,)-increasing at acG if f
satisfies the following two conditions:

1°, ||x]||< 8, tmplies a+x€G;

2°, fla+z)—fla)x=ar if a<0 and 0<||2||< 0.

A mapping f: G—E is said to be (&, d)-uniformly increasing
at a€ G if f satisfies the following conditions:

1°. ||z||<d, tmplies a+x€G;

3°, |Ifla+z)—f(a)—ax||=& ]| x| i)_” a=0 and 0<||z||<do

It is evident that, if a mapping f: G—F is (&, d,)-uniformly in-
creasing at a, then f is (d,)-increasing at a.

The following two facts immediately follow from the above
definitions.

Theorem 1. If a mapping f: E—E is (o )-increasing at every
point of E, then f is one-to-one.

Theorem 2. If a mapping f: E—E 1is (g, «)-uniformly in-
creasing ot every point of E, then, for any non-positive number «,
the range of f(x)—ax 1s closed.

A mapping f: G—E is said to be a completely continuous vector
field on G if f is continuous on G and the image F(G) by the
mapping F(x)=x—f(x) is contained in a compact set. We shall say
that f is a completely continuous vector field on F if it is a completely
continuous vector field on any closed ball B(r)={zc E ||| z|<7}.

Then, we can prove the following

Theorem 3. Let f: E—E be a mapping. Suppose that

4°, f 18 (&, o )-untformly increasing at every point of E;

5°. f is a completely continuous vector field on E.

Then, the mapping f is onto, one-to-one and bicontinuous.

Proof. Theorem 1 and the condition 4° imply that f is one-to-
one, Theorem 2 and the condition 4° imply that f(E) is closed. We
have only to prove that f(%) is open.

Assume that y, € (&), namely, y,=f(x,) for some x,€ E. There
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exists an open ball B(r)={xe E|||z||<r} such that x,€ B(r). By
the condition 5°, f is a completely continuous vector field on the
closed ball B(r). Therefore, Theorem 3 of [3] implies that f[B(r)]
is an open set in E, and, evidently, y,€ f[B(r)]<f(&), which means
that f(F) is open.

Therefore, f should be onto. The continuity of the inverse mapping
of f follows from the condition 3° if we take a=0.

Next, we consider the case when the mapping f is not a com-
pletely continuous vector field but is Fréchet-differentiable on E.

A mapping f: G — E is said to be Fréchet-differentiable at a € G
if the exists a continuous linear mapping D: E—E such that

6°. Sfa+2)—f(@)=D(@)+ol|x|]),
where o(|| z [|)/|| 2 ||—0 if ||2|[—0. We denote this continuous linear
mapping D by f’(a) and call the Fréchet-derivative of f at a.

Then, we prove the following

Theorem 4. Let f: E—E be Fréchet-differentiable at every point
of E. Then, f 18 (&, 0)-uniformly increasing at a if and only if
the Fréchet-derivative f'(a) of f at a is (&, oo )-uniformly increasing
at 0 for some &,>0.

Proof. Let f be (&, d))-uniformly increasing at a. Then, from
6° it follows that, if <0 and ||« |/<d,,

I1f (@)@)—aw||=||f(a+x)— fla)—ax—o(2|]) ||
z||f(@+2)— fla)—ax || —| ol = |) ||
& llw(l—=Ilo(lz ).
There exists 0,>0 such that 0,=0d, and ||o(|| 2 ||)||<Ze, || @ || if || ®||<0,.
Therefore, if ||#|/<d, and a0, we have
| (a)(@w)—ax ||z e || 2 |,
which means that f'(a) is (3¢, 0,)-uniformly increasing at 0, and, since
Sf'(a) is a linear mapping, 9, can be replaced by co.

The converse of this theorem can be proved similarly.

Theorem 5. Let f: E—E be a mapping. Suppose that

4°, f 18 (&, oo )-uniformly increasing at every point of E.

7°. f ts Fréchet-differentiable at every point of E and the

Fréchet-derivative f'(a) is continuous with respect to a;

8°. f'(a)E)=E.

Then, the mapping f ts onto, one-to-one and bicontinuous.

Proof. The facts that f is one-to-one and f(%) is closed can be
proved in the same way as in the proof of Theorem 3. We have only
to prove that f(E) is open. For this purpose, we shall use the
Implicit Function Theorem (for example, [1], p. 12, Theorem 1),
which insures that, if f'(a) is onto, one-to-one and bicontinuous, f
is an open mapping. By Theorem 4, f’(a) is one-to-one and bicontinuous,
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but it is not necessarily onto. This is the reason why we need the
condition 8°.

Remark. Let E be a real Hilbert space, ¢(x) be a real-valued
functional on E and a mapping f(x) be the Fréchet-derivative of ¢(x).
If the mapping f(x) is Fréchet-differentiable at every point of E,
then the mapping f’(a) is a symmetric operator ([2], p. 56, Theorem
5.1.). Therefore, when E is a real Hilbert space, the conclusion of
Theorem 5 remains true if the condition 8° is replaced by the follow-
ing condition: f(x) vs a continuous Fréchet-derivative of a functional
on E,
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