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150. Weak Convergence of the Isotropic Scattering
Transport Process with One Speed in the

Plane to Brownian Motion

By Toitsu WATANABE
Nagoya University

(Comm. by Kinjir6 KJNJ(I, M.Z.A., Sept. 12, 1968)

Let us consider a particle moving in the d-dimensional Euclidian
space R. It travels in a straight line with constant speed and after
some random time it undergoes scattering which changes its moving-
direction and so, after scattering, continues to move as if it starts
atresh. Now let P(t, x, F) be the probability that we can find the
particle in a region F at time t when it starts rom x. In 2-dimensional
isotropic case, Monin [4] has obtained the explicite formula of P(t, x, )
and has shown that it converges to 2-dimensional Gaussian distribu-
tion as t-.o. On the other hand, in one-dimensional isotropic case,
Ikeda and Nomoto [3] have proved that P(t, x, .) converges to a Gaus-
sian distribution as the speed o the particle tends to infinity in an
appropriate manner and moreover they have shown that the measure
on the space of trajectories of the motion also converges to the Wiener
measure.

The purpose of this paper is to prove that the same result to them
is also valid for the two-dimensional case.

1. Notations and definitions. Let 0=[0(t), +oo, t, P.] be a
right continuous jump proeess on the state space [-r, z), which is
identified to the unit circle S. Also let v be the first jumping time
of O, i.e., v=inf {t: O(t)=/:O(O)}. We assume that the following condi-
tions be satisfied"

(i) P{v > t} e-t, c >0 constant,
(ii) P{O(v) e F}=IFI/2r,

where IFI denotes the Lebesgue measure of the set F.
The formula

(1.1) A(t)= O(s)ds, 0sin O(s)ds

defines on R’-valued continuous additive functional ot 0. Let E RS
be the product space of R and S, and (E) be the topological Borel
field of E. For each point (x, 0)e E, we define the following:
(1.2) X(.)(t)=(x+ ct(t), O(t)),
(1.3) P(,){X(,)(t) e B}=P{X(,)(t) e B}, B e _(E),
(1.4)
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Then it is not difficult to see that X(,) [X(.)(t), + c, l.o), p(,o),
(x, 0)e E] is a system of Markov family of random functions so that
there corresponds the Markov process X=[X(t)-(x(t), O(t)), +c,t,
P.o, (x, 0) e E] (el. [1]).

Definition 1.1. We call the Markov process X the isotropic scat-
tering transport process with one speed c, or simply the transport
process with speed c.

2. Characteristic function and convergence in distribution. For
each x e R we define a measure P,(.) by

(2.1) P,{x(t) e 1"}- I" P(,.){(x(t), t?(t)) e F Z}dO, F e _(R)

and consider the stochastic process [x(t), t>_0, P,, x e R], which de-
scribes the trajectories of moving particles. Now, let (a, a’t’x)
be the characteristic unction o [x(t), P,], i.e.
(2.2) (a, a. t" x)-E[exp {i(ax(t)+a.x(t))}],
where x(t)-(x(t), x(t)) and E,[.] is the expectation with respect to
P,(.).

Availing the Kac’s ormula, we have
Lemma 1ol. (i) (a, a" t’x)--exp{i(vx+ax)}(, v" t’O),

where x= (x, x).
(ii) (a, a’t’O) is the unique solutions of the integral equation"

(2.3) U(t)- e-tJo(c(a + a)t)

+ c e-co(C(+ )u)U(t-u)du,
where Jn(’) i8 the usual Bessel function of order n (n--O, +_ 1, +2, ...)
(cf. [5]).

Lemma 1.2. (i) 9(a, a" t" O)
ce-Ct sin h{cc-(a+

c-(a+
2nn (ct) Jn(e(a+ a)t)].+ e-:t[0 (2n) (a +

(ii) 9o(a, a." t" 0)- 2ce-*:t sin h{cJc:-(a+
c-(a +
(+)e- (c).+0
c-(+a)

Proof. Let (s) be the Laplace transform o as the unction
of t. Then we get rom the integral equation (2.3)

(2.4) (s)= +(s+ c) +c(+) (s+ c) + c(a+)
Therefore,

C(2.5) (s)--
(s+ c) + c(a+a)- c



No. 7] Convergence of Isotro.pic Scattering Transport Process 679

+ E c{(s+ c) + c(a+ a)} (/)/.

C(2.6) (s)-- + (s + c)+ c(a+ a)
(s + c) + c(a+ a)- c (s + c) + c(a+ a)- c

After elementary but tedious calculations of the inversion formula of
the Laplace transform of (s), we obtain the expressions of (i) and
(ii) of .

Now let B-[B(t), +, t, P] be the Brownian motion on R and
let (a, a::t:x) be the characteristic function of B(t) starting from
x, which is equal to exp {i(qx+ax:)--(a+a)t/2}. Observing the
formula in Lemmas 1.1 and 1.2, we have the following"
(2.7) lim (ax, a: t x)= (a, a: t x).

Then (2.7) means that the distribution of x(t) converges to the distri-
bution of B(t). Moreover we can show the following theorem.

Theorem 2.1. The finite dimensional distribution of [x(t), P]
converges to the corresponding finite dimensional distribution of
[B(t), P].

Remark. It is shown in [4] that

P{x(t) e F} [ g(t, x, y)dy (F e (R)),
J

(2.8)

where

(2.9) g(t, x y)-- 2ct ([x--y[--ct)+ c exp {cti--(Ix--y /ct)}
1-- ([ x--y /ct

1----exp {--(Ix--y]/2t)}(l+O(t-)) (tc).
2rct

3. Weak convergence. Let C be the space of all continuous
unctions and _(C) be the Borel field generated by cylindrical sets
in C.

Since both stochastic processes x(.) and B(.) are continuous in t,
therefore they determine probability measures/ and/ on (C, _(’)),
respectively. Under these notations we get the following theorem.

Theorem 3.1. The transport process with speed c (cO) con-
verges weakly to the two-dimensional Brownian motion as the speed
c increases to infinity, that is, the sequence of the measures tt con-
verges weakly to/z as c-c.

To prove the theorem, we prepare a lemma.

Lemma 3.1. Ex[Ix(t)-x(s)14]<_KIt-sl, where K is a constant
number independent of c.

Proof. Expanding both sides o the equality (i) in Lemma 1.2
in the Tylor series and comparing the coefficients o a, aa, and a,
we get
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(3.1) E0[I x(t) ] Eo[I x(t) ] + 2Eo[x(t)x(t) ] + Eo[ Ix(t) ]

=4 e- 4ct (ct)n
t--- 0 2(2n) (n + 1)(n + 2)

+ (1+12t/ sinh (ct)-ct cosh (ct)}
g68t.

From this, we can easily prove the lemma.
Combinig Theorem 2.1 and Lemma 3.1, we complete the proof of

Theorem 3.1. (cf. [2, Chap. IX]).
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