145. Almost Convergent Topology

By Yong-Woon KIM
University of Alberta and Wisconsin State University,
Eau Claire, Wisconsin

(Comm. by Kinjirô Kunugi, M. J. A., Sept. 12, 1968)

- 1. Introduction. The study in function space topologies mainly has been investigated in the space of continuous functions (see [3]). Recently Kolmogorov [2], Prokhorov [4], and Skorokhod [5] discussed topologies on the space of all discontinuous functions of the first kind in connection with a problem in probability theory. In the theory of probability, if the independent variable t is considered to be the time, then it is impossible to assume the existence of an instrument which will measure time exactly whence a comparatively weaker topology is considered (see [5]). In this paper for the above mentioned purpose almost convergent topology is considered and in the end of this paper one shows Skorokhod M-convergent is a special case of almost convergent topology.
- (2.1) Definition. Let (X, L) and (Y, S) be topological spaces. For each pair of open sets $U \in L$ and $V \in S$, let

$$A(U, V) \equiv \{ f \in Y^X : f(U) \cap V \neq \phi \}.$$

An almost convergent topology on Y^x is that topology which has as subbasis $\{A(U, V)\}$.

The following example provides a motivation to study the topology.

$$(2.2) \quad \text{Example.} \quad \text{Let } f_n \colon [0, 1] \to R \text{ (reals with the usual topology)} \\ f = \begin{cases} 0 & \text{on } [0, 1/2), \\ 1 & \text{on } [1/2, 1]. \end{cases} \\ f_n = \begin{cases} 0 & \text{on } [0, 2^n - 1/2^{n+1}), \\ 2^n x - (2^n - 1)/2 & \text{on } [(2^{n-1})/(2^{n+1}), (2^n + 1)/(2^{n+1})), \\ 1 & \text{on } [2^n + 1/2^{n+1}, 1] \end{cases}$$

for $n=1, 2, \cdots$

Since $f_n \notin P(1/2, S_{\nu}(1)) = \{f \in Y^X : f(1/2) \subset S_{\nu}(1)\}$, where $S_{\nu}(1)$ is the open sphere about 1 with the radius $\nu < 1/2$. $\{f_n\} \not\to f$ in the point open topology. However, $\{f_n\} \to f$ in the almost convergent topology (we denote as $\{f_n\} \xrightarrow{A} f$ from now on). As the relation with other topologies we have

(3.1) Theorem. A-topology (Almost Convergent Topology) $\subset P$ -topology (point open topology).

Proof. Let A(U, V) be a subbasic open nbhd in A-topology and $f \in A(U, V)$ where $U \in L$, $V \in S$ and L, S, are topologies in the domain and range spaces respectively. Then there exists $x \in U$ such that $f(x) \cap V = \phi$ which implies $f(x) \in V$ and $f \in P(x, V)$. Therefore, P(x, V) is an open nbhd of f and contained in A(U, V).

Combining Example (2.2) and Theorem (3.1) we have [3.2].

Corollary. Almost convergent topology is strictly smaller than the point open topology except that they coincide when (X, L) is the discrete topology.

Proof. The first statement is an easy consequence of previous results and if (X, L) is a discrete space then

$$P(x, V) = \{ f \in Y^X : f(x) \in V \} = \{ f \in Y^X : f(x) \cap V \neq \phi \}$$
 and $x \in L$ which implies $P(x, V) = A(x, V)$.

As a separation axiom we have

[3.3] Theorem. The set of all continuous functions on X to Y which is denoted as C(X) is T_1 with respect to the A-topology whenever (Y, S) is Hausdorff.

Proof. Let $f, g \in C(X)$ and $f \neq g$. Then there exists $x \in X$ such that $p = f(x) \neq g(x) = q$. Since Y is a Hausdorff space there exist $U, V \in S$ with $f(x) \in U$, $g(x) \in V$, and $U \cap V = \phi$. Since $f, g \in C(X)$ there exist $O_1, O_2 \in L$ such that $x \in O_1 \cap O_2$ and

$$f(O_1) \subset U$$
 and $g(O_2) \subset V$.

Then $(g(O_2) \cap U) \subset (V \cap U) = \phi$ and $(f(O_1) \cap V) \subset (V \cap U) = \phi$. Let $O = O_1 \cap O_2$ then $x \in O \in L$ and $g \notin A(O, U)$, $f \notin A(O, V)$ while $f \in A(O, U)$ and $g \in A(O, V)$.

It is well known that in the point open topology $\lim f_n = f$ iff $\lim f_n(x) = f(x)$ for every $x \in X$. By Corollary [3.2] we expect a wider result in the A-topology. In fact we have the following example.

[4.1] Example.

$$f_1 = egin{cases} 2x & ext{on } [0,1/2), \ 2-2x & ext{on } [1/2,1]. \end{cases} \ f_2 = egin{cases} 2^2x & ext{on } [0,1/2^2), \ 2-2^2x & ext{on } [1/2^2,1/2), \ -2+2^2x & ext{on } [1/2,3/2^2), \ 2^2-2^2x & ext{on } [3/2^2,1]. \end{cases} \ f_n = egin{cases} 2^nx & ext{on } [0,1/2^n), \ dots & dots \ 2^n-2^nx & ext{on } [2^n-1/2^n,1]. \end{cases}$$

Since dyadic fractions are dense in [0, 1] $\{f_n\} \xrightarrow{A} f$ where

$$f = \begin{cases} 1 & \text{on rationals,} \\ 0 & \text{on irrationals.} \end{cases}$$

Moreover, let $\tilde{f}=1$ and f=0, then $\{f_n\} \xrightarrow{A} \tilde{f}$ and $\{f_n\} \xrightarrow{A} \tilde{f}$ where $\tilde{f}(X) \cap \tilde{f}(X) = \phi$ and both \tilde{f} and \tilde{f} are continuous functions. In fact if $\{f_n\} \xrightarrow{A} f$ and the graph of f is dense in the graph of \tilde{f} then $\{f_n\} \xrightarrow{A} \tilde{f}$ also.

There is an interesting relation between A-topology and Skorokhod M-topology which he denoted as M_2 -topology (see [5] p. 266) in the space of all functions which are defined on the interval [0, 1] whose range space Y is a complete separable metric space, and which at every point have a limit on the left and are continuous on the right.

[4.2] Definition (Skorokhod).

$$R[(x_1, f(x_1)), (x_2, f(x_2))] = |x_1 - x_2| + d(f(x_1), f(x_2))$$

where $d(f(x_1), f(x_2))$ is the distance of $f(x_1)$ and $f(x_2)$ in $Y\{f_n\}$ is said to be *M*-convergent to f iff

$$\lim_{n\to\infty} \sup_{(x_1,f(x_2))\in G(f)} \inf_{(x_2,f_n(x_2)\in G(f_n))} R[(x_1,f(x_1)),(x_2,f_n(x_2))] = O,$$
 where $G(f) = \{(x,f(x)): x\in [0,1]\}.$

Let $U_n = S(x, 1/n) = \{z : |x-z| < 1/n, z \in X\}$ and $V_n = S_d(f(x), 1/n) = \{y : d(f(x), y) < 1/n, y \in Y\}$ then $A = (U_n, V_n)$ is an element in the A-topology and $\{f\} \rightarrow f$ in the A-topology iff $G(f_l) \cap (U_n \times V_n) = \phi$ at each point $x \in X$ and $l \ge N_x$ for some fixed N_x . i.e., $f_l \in A(U_n, V_n)$ for $l \ge N_x$. Therefore, Skorokhod M-topology is a special case of A-topology.

References

- [1] J. L. Kelley: General Topology. D. Van Nostrand, Princeton, N. J. (1955).
- [2] A. N. Kolmogorov: On Skorokhod convergence. Theory of probability and its applications, Vol. 1, 215-222 (1956). S. I. A. M. (English translation), Philadelphia, Penn.
- [3] S. A. Naimpally: Graph topology for function spaces. Trans. Amer. Math. Soc., 123, 267-272 (1966).
- [4] Yu. V. Prokhorov: Convergence of Random Processes and Limit Theorem in Probability Theory. Theory of Probability and its Applications. Vol. 1, 157-214 (1956). S. I. A. M. (English translation), Philadelphia, Penn.
- [5] A. V. Skorokhod: Limit Theorems for Stochastic Processes. Theory of Probability and its Applications, Vol. 1, 261-290 (1956). S. I. A. M. (English translation), Philadelphia, Penn.