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144. A Remark on a Problem of M. A. Naimark

By Chien WENJEN
California State College at Long Beach, U.S. A.

(Comm. by Kinjiré KUNUGI, M. J. A., Sept. 12, 1968)

Gelfand and Naimark [6] characterized the algebra of all continu-
ous complex-valued functions on a compact Hausdorff space as a
commutative Banach *-algebra which satisfies the condition |lxa*||
=]||z*||-||]#||: while Aren’s generalization of the Gelfand-Naimark
theorem is that a complete commutative seminormed *-algebra with a
partition of unity is equivalent to the algebra of all continuous com-
plex-valued functions on a locally compact paracompact space C(T, K)
[1]. A question is posed by Naimark in his treatise [6] : Is it possible
to characterize all complete commutative seminormed *-algebras
which are equivalent to (topologically equivalent to algebraically *-iso-
morphic) the algebras of all continuous complex-valued functions on
locally compact Hausdorff spaces? Even though some more general
result in this direction was obtained by Sha [6, 1964], it seems the
problem remains open. Incidentally a solution of the problem was
given by the writer [8, p. 182]. The purpose of this note is to present
a modified proof of the solution and a second characterization in terms
of seminorms.

“Seminormed algebra” and “locally multiplicatively convex alge-
bra” (LMC) will be used synonymically in this paper. A subset X of
an algebra is said to multiplicatively convex (m-convex) if X3 cJ.
We assume the family €/ of seminorms of an algebra is so large that
Ve, ULV imply UeC’. Some basic theorems and definitions
employed hereafter are referred to [1], [3], and [4].

1. Functional representation. Lemma. If BX is the Stone-
Cech compactification of a completely regular space X, then any un-
bounded continuous real function of f on X can be continuously ex-
tended to an extended function f over SX which admits + co or —oo
on some subsets of SX—X.

First proof. Let B be the two-point (4 oo0) compactification of
the real line. Then B is a compact Hausdorff space and f is a con-
tinuous mapping from X into B. By the Stone-Cech compactification
theorem [2, p. 153] f has a continuous extension f on BX and the
lemma is proved.

Second proof. Suppose
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n JS(@)=>n,
@)= ¢ f(x) if —n<f(x)<n,
—n f@) < —n.

Let pe BX—X and
N, (p)={z: | fa(x)— F.(p)| <e< |, x e X}
where f, is the continuous extension of f, over SX. In case f is
bounded on N,(p)NX, f and f,, coincide on N,(p) N X for some m and
f can be continuously extended to a finite value at p. Otherwise f is
unbounded on N,(p)N X for all n and ¢ and f(x) is either >nor < —n
on N, (p)NX for all large n. Then F assumes +co or —oco at p.
Theorem 1. A complete commutative seminored *-algebra A
with unity and satisfying the condition :
V(xx*) >k, V() V(x*), Vel xzcA,
is equivalent to the algebra C(T,, K), with t,topology<k-topology
(compact-open), of all continuous complex functions on a completely
regular space T\.
Proof. The algebra A is equivalent to a subalgebra S of C(T, K),
where T :VUCVQV is the union of mutually disjoint compact sets Q,
€

[8, p. 178]. We denote V(#)>U(x) for all xte A by V>U. A func-
tion fe C(T, K) belongs to S if and only if f,(M,)=fy,(My) for all
V>U, fr being the restriction of f on Qy,, My=nM, for M, ¢ @, and
the natural projection from @, to Q.

It follows from the lemma that each fe S has a continuous exten-
sion f over BT. Denote by S the set of all 7 for feS and let L be
the class of subsets L, of BT defined by L,={t; feS implies f(¢)
=f(m), te BT}, (me BT). A subset F of L is said to be closed if and
only if the union of L, € F' is closed in 8T. The mapping ¢ : fT—L
is continuous and the g-images Q) of @, are compact sets in the topo-
logical space T, the g-image of T'. The subalgebra S of C(T, K) is a
subalgebra S’ of C(T,, K); while S’ endowed with the uniform topolo-
gy on the compact sets @/, is equivalent to the algebra A.

On the other hand an arbitrary continuous function f’ on T, is
continuous on T and satisfies the condition: f,(My)=fy(My) if V>U
and My=nM,. Then f'e¢8 and S’'=C(T,, K).

Definition 1. Let 9 be the set of all closed maximal ideals M in
a topological algebra A. The topology of C(H, K) defined by the uni-
form convergence on the closed equicontinuous subsets of ¥ is called
Michael’s topology.

Corollary 1 (Michael). A complete commutative *-algebra A
with unity e is equivalent to C(¥, K) under Michael’s topology.

Proof. There is one to one correspondence between the closed
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maximal ideals of A and the continuous multiplicative linear func-
tionals f on A satisfying the condition f(e)=1, and also to each semi-
norm V there associates a closed, convex, symmetric, and radial at 0
subsets Cy={z: | V(x)| <1, x ¢ A} of A [4]. A closed set F of continu-
ous multiplicative linear functionals f corresponding to the closed maxi-
mal ideals in @, is equicontinuous on account of | f(x)|< f(e)V(x) <1
for x e Cy, f € F. Conversely, a closed set F' of continuous multiplica-
tive linear functionals defined by {f:|f(x)| <1, f(e)=1, xe Cy} for
some closed, convex, symmetric, and radial at 0 set C, in A associated
with a seminorm V is a closed subset G of Q,. The topology of uni-
form convergence on the closed equicontinuous set F' is the same as
the topology defined by the seminorm on G.

Definition 2. A m-barrel in a LMC algebra is a barrel which is
m-convex. A LMC algebra is called m-barrelled if every m-barrel is
a neighborhood of 0.

The following is a consequence of an observation that to each
seminorm there corresponds a compact set in T and conversely (see
Proof of Theorem 1).

Corollary 2. A complete commutative seminormed *-algebra A
is equivalent to C(T,, K) of all continuous complex function on a com-
pletely regular space T, under k-topology if and only if A is m-bar-
relled.

2. Naimark’s problem. Theorem 2. The necessary and suf-
ficient condition that a complete seminormed commutative *-algebra A
satisfying: V(xa®) >k, V(®)V(x*), Ve )/, be equivalent to C(T, k),
with k-topology, of all continuous complex functions on a locally com-
pact Hausdroff space T, is:

To any closed maximal ideal M, in A, there exist x,¢ M, and ¢>0
such that all closed maximal ideals M satisfying |x,(M)| <e contain a
kernel ideal E.

Proof. Necessity. Let T be a locally compact Hausdorff space
and A be equivalent to C(7', K) under k-topology. M, T has an open
neighborhood N with compact closure N. There exists a real func-
tion x,e C(T, K) with 2(M)=0 and z,(M)=1 for Mc CN. The set
G={M;|x(M) <e<1} is compact and is the support of a seminorm V.
Since there is one to one correspondence between the closed maximal
ideals in C(T, K) and the points in T, [5, p. 8251, the continuous func-
tions vanishing on G constitute the kernelideal of the seminorm V,,
contained in all closed maximal ideals M which satisfy the condition
|2(M)| <e.

Sufficiency. It suffices to prove the local compactness of the
space T,. As E is the kernel ideal of a seminorm V,, contained in all
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closed maximal ideals M satisying |x(M)|<e, the set y={M : |x(M)|<e,
M e Q) consists of all closed maximal ideals in A subjected to the
condition |x(M)| <e. Let ¢ be the same mapping from the space T to
T, as in the proof of the Theorem 1. The g-mapping restricted on 7,
denoted by o,, is one to one and continuous, and is therefore a
homeomorphism between y and a(y) on account of the compactness of
7. Let N be the interior of ¢. Then ¢(N) is an open neighborhood
of g(M,) in T, and the closure of ¢(N) in T, is g(y) which is compact.
The local compactness of T, is proved.

Theorem 3. A complete commutative semi-normed *-algebra A
with a family CJ/ of semi-norms is equivalent to the algebra C(T, K)
with k-topology, of all complex continuous functions on a locally com-
pact Hausdorff space T if and only if for each V,e C)/ there is 2,€ A
such that Msupﬂ | (M) | =2, 2,(My)=0 for some closed maximal ideal

€

M, belonging to the support of V,, and V=sup{V:V(z)<1, Ve )}
is a seminorm in Cj/.

Proof. Necessity. By Theorem 2, there is x, € M, to each closed
maximal ideal M, in A such that all the closed maximal ideals satis-
fying |2y(M)| <2 contain a kernel ideal E of some seminorm V,.
V=sup {V:V(x)<1, V e Y} satisfies the relation V(x):sup{]x(M)[ :
|@(M)| <1, M eQy) for all ze A. Then the compact set {M: |z,(M)]|
<1, MeQy} in T, is the support of V and V is a seminorm in CJ/.

Sufficiency. Let M, be a closed maximal ideal in A and Z,, a
kernel ideal of some seminorm V, contained in M,. We denote the set
of closed maximal ideals M in A a satisfying |2,(M)| <e<} for the
%€ M,by W. Each M, e W contains a kernel ideal Z,,. G={M : z,(M)
<h<1,h>}%, Me@Q,) is a compact set in Q,, and is a support of some
seminorm V’. Z, is contained in M, since M, belongs to G. V'(x)<1
implies V>V’ and Zy,cZ,.. Then ZycM,. Hence all the closed ma-
ximal ideals in E contain Z3 and the local compactness of T, follows
from Theorem 2.

Let _[ be the set of all closed, symmetric, m-convex, and radial
at 0 neighborhoods of LMC algebra A. It is clear that the closed m-
convex set associated with V in Theorem 8 is given by Cy= N Cy.

w;, eeC’ v
Theorem 3 can be put into the following equivalent form.

Theorem 3’. A complete commutative *-algebra A with a family
€ of seminorms is equivalent to the algebra C(T,, K), with k-topolo-
gy, of all complex continuous functions on a locally compact Haus-
dorftf space T, if and only if, to each M,c H(A), there is an z, ¢ M,
such that (1) Msugn |2,(M)| =2 and (2) Cj is a neighborhood of 0.

€
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