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On Almost Everywhere Convergence
of Walsh.Fourier Series*

By Jun TATEOKA

(Comm. by Kinjir8 KUNU(I, M.J.A., Sept. 12, 1968)

1. Introduction. L. Carleson [2] proved that the Fourier series
of functions belonging to the class L(--, ) converge almost every-
where.

Combining the method of Carleson and the theory of interpola-
tion of operators, R. A. Hunt [3] extended the result to the Fourier
series of functions f e L(-, ), pl. In fact he proved three maxi-
mal theorems about partial sum of Fourier series. On the other
hand P. Billard [1] applied the method of Carleson to Walsh-Fourier
series of functions f e L(0, 1).

In the present paper, the author applies the Carleson-Hunt-
Billard method to Walsh-Fourier series, and proves the analogues to
Hunt’s result.

Let S(f) be the n-th partial sum of Walsh-Fourier series of inte-
grable and periodic function f(t) (0<_ t_<l).

Let
Mf(t) Sup {[Sn(f)[ n>_O},

then the theorems of this paper are;
Theorem 1. If l(p(c, then [[Mf[]p_

Theorem 2. IIMfll<_eIolf(t)](loglf(t)l)dt+C.
Theorem 3. For any y O,

m{t e (0, 1) Mf(t) >y} <_C
It is well known that these results imply the almost everywhere

convergence of S(f) to f(t) for f in the respective function spaces.
2. Notation. Let(r,r,...,r,...)and(w0, w,...,w,...)be

the classical system of Rademacher and Walsh functions. For a posi-
rive integer n we define N by 2Nn_n2Nn- and write
(2.1) n=0+2+...+2(=0,1;]=0,1,2,...,N;.=1).
The Dirichlet kernel of Walsh system is defined by
(2.2) Wn(t) Wo(t) + w(t) +... + w_(t).

*) This work was done during the author’s stay at Mathematical Institute,
Tohoku University. The author thanks Professors G. Sunouchi, C. Watari, and S.
Igari for guidance and encouragement. Professor Sunouchi says that the analogous
theorems have been established also by Hunt-Taiblesson from a letter of Hunt.
But this work was done independently, and completed before the end of March, 1968.
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We assume= ==1 (Nn... n>_O) in (2.1).
Then (2.2) becomes

n
W(t) (1 + r(t)) +r+ (1 + r(t)) +... + rNn+l. rn_+ 1

j=x =
nk

x (1 + r(t)),
j=l

nk
where (l+r(t))= 1 for n=0.

Furthermore we can write
(t)+(2.3) W(t)-w(t)[(t) + + (t)],

2 for 0 t 2--,
where *(t)- --2 for 2--t2- (]-0, 1, 2, .),

0 otherwise.
Observe

(2.4)

We put

(*(t)- F, w(t)-r/ F, w(t)=r/(t) [-[ (1+ r(t)).
=J =0 =1

Let us write

and put

(t)-*(t) + (t) +... + ,(t).

S(f) E cw(t), (cn- f(t)w(t)dt, n-O, 1, 2, ...),
=O

(t)--(f t)-- F, cw(t), (k--O, 1, 2, ...),
=2

3_(t)-_(t)=Co.
Then we get

(2.5) S(f) E (t).

For each integer 0 we divide (-2, 2) into 4.2 equal intervals
of length 2-. The resulting intervals are rom left to right denoted
w., ]--2.2, ..., 2.2-1. If we are not interested in subindex ] or
]. , we may write w or w instead of w..

For each integer n0 we define n[w] by the greatest integer less
than or equal 2-n.

We consider the modification of usual (0, 1) which is the set
(0, 1)* of points t=($, ,..., ,...) (=0, 1) and make it totally
disconnected compact abelian group. Let w be the set of points
_(, ,..., 0, +,...) in which , ,..., 0 are fixed and $+,
vary independently. We transpose the structure of w to (0, 1)* by
the function w(0, 1)* defined by (, , ..., , $+, .)]
=($+, $+,...). Then the n-th Walsh function on w (0) is
Wn(W ;t)--Wn[(t)]. In the same way we define the analogous func-
tion (w ;t) and (w ;t). P. Billard [1] verifies that

Wn(t)=OW(W t) (t e w), where -- 1 does not depend on t,
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and writing

S((0, 1)* x)=cw(x)- If(t)w(x t)(x-t)dt
jo

considers the modified partial sum of Sn((O, 1)*; x);

S* ((O, 1)*; x)= f(t)w(t)8(x- t)dt.

He observes
S*((0, )* x) s((0, )* x) l.

:. Sketch of the proof. From the reduction of Hunt’s theorem
the following result implies the theorems.

Fix measurable set F(0, 1)* and consider the periodic function
f(x)- Z(x), x e (0, 1)*, and the number 1 p c and y 0. For any
fixed number N0 we will show that for Inl-A2- (0AI is an
absolute constant) and x e (0, 1)* we have S*,(x Z)I _<Const. Ly ex-
cept for x in an exceptional set E, where mE<_ Const. y-mF, L--L(p)
_< Const. p(p- 1)-.

We will study some of elements which are used in the proof of
our result.

The ollowing lemma is proved by C. Watari [4].
Lemma (:.1). Let f(t) be function of L class and its Walsh-

Fourier series be formed (2.5). Then the series

F. 2d(t) (2=0, 1 or 1)

is Walsh-Fourier series of g(t) of L" class and there exists a constant
A, such that

Ilg(t)]l,<_A,l]f(t)]],, where A,_<Const. p(p-1)-, l<p<.
We consider a suitable partition 9-{w}, w-w of (0, 1)*. If

x e w-w(x), we write

(3.2) S*((0, 1)*; x)

--t71------ 1’- f(t)Wn()(W(X) t)()(w(x) x-- t)dt- Rn(x) - Hn(x),
where 0-- +_ 1, o 0, So= So* 0

R()= N(t)5_,u(-t)dt,

(3.3) Hn(X)-- fl,[f(t)Wn(t)-- gn(t)]n_n_,(x)].lgt(x
1 I f(u)w(u)du, t e w(x).E(t) wt(x)------

From (2.1), (2.3), and (2.4) R(x) is the finite sum of
.hrn

(3.4) E jA(gn t)

at the point x.
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Lemma (3.5). If f(t) is integrable and Tf(t)--Sup

then
]lTf(t)ll_Bllf(t)ll, where B_Const. p(p--1)-, lpc.
According to Lemmas (3.1) and (3.5) we have
IIRn(x)II_DIIE(x)]I, where D_Const. p(p-1)-:, lpc.

Then the extrapolation the theorem yields
(3.6) m{X e w R(x)y}_Const. exp{-Const.
Basing ourselves on (3.6) and a slight modification o Hunt-Billard’s
result we can prove heorems.
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