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142. Global Solution or an Initial Boundary Value
Problem of a Quasilinear Hyperbolic System

By Takaaki NISHIDA

(Cnmm. by Kinjir6 KUNU(I, M.J.A., Sept. 12, 1968)

1. Introduction. We consider the following system of equations
( 1 ) v/t--3u/3x=O, u/t+(a/v)/x=O,
which is the simplest equation in gas dynamics (Lagrangean form in
the isothermal case" p-a/v, a is a constant >0), where v is the specific
volume, u is the speed of the gas.

Here we consider the Cauchy problem in t>_0, -c x + c for
(1) with the initial values
(2) v(O, x)-Vo(X), u(O, x)=Uo(X) for --cx +c
and also the piston problem (an initial boundary value problem) in
t_>0, x>_0 for (1) with the boundary values
( 3 ) v(O, x)- Vo(X), u(O, x) Uo(X) or x >_ 0,

u(t, O)--u(t) for t_>0,
where vo(x), uo(x), u(t) are bounded functions with locally bounded
variation and Vo(X) >_ -constant>0.

We see that the Cauchy problem (1), (2) and the piston problem
(1), (3)have generalized solutions in the large. We use the Glimm’s
(or slightly modified) difference scheme [2] for the proof of the exist-
ence theorems.

There are many articles [1]-[8] which treat the existence theorem
of the solution in the large for the initial value problem of the quasili-
near hyperbolic system of equations, where the system is more general
than in this paper, but the initial value is more restricted.

2. Cauchy problem. Here we consider the Cauchy problem
(1), (2). The definition of the generalized solution v, u of the Cauchy
problem (1), (2) is the following" v(t, x), u(t, x) are bounded measurable
functions and satisfy the integral identity

ff(v. ft-u.f)dtdx+ ; Vo(X)f(O, x)dx=O
t0 =0

t>0 t=0

for any continuously differentiable functions f, g with compact
support.

The system (1)is. hyperbolic in v0 and has the characteristics,
the Riemann invariants and the nonlinearity as follows"



No. 7] Initial Boundary Value Problem of a Hyperbolic System 643

= --(a/v), r=u+a log v
t=a/v, s-u--a log v

,lr=/ls=(1/2a) exp {--(r--s)/2a} >0.
Concerning the Riemann problem (1) with the initial values

(4) Vo(X):
v- Uo(X)=

u- x< O
O,v+’ u+ x

where v, u are constants, v >0,
we have the following lemma

Lemma 1. Riemann problem (1), (4) has a generalised solution
v(t, x), u(t, x) which is piecewise continuous and piecewise smooth,
and also satisfies the following a priori estimate.
( 5 ) r(v(t, x), u(t, x))>_ ro, s(v(t, x), u(t, x))<_So,
where r0=min {r(v_, u_), r(v/, u/)}, s0=max {s(v, u)}.

Lemma 2. The shock curve has the same figure in (r, s)plane,
i.e., the first shock arising form to, So is represented by
(6.1) S--So--f(r--ro) for r_ro,
the second shock is
(6.2) to--r--f(so--s) for s

_
so,

where f(r) is independent of to, So and an odd function in r and
O<_f’(r)<_.

Now we consider the Glimm’s difference scheme [2]. We approxi-
mate the initial values (2) by the step unctions
( 7 ) v(O, x)-- Vo(ml), u(O, x) Uo(ml)

or (m-1)/x(m+ 1)/, v/o, m" even,
and define

r0= inf r(Vo(X), Uo(X)), So- sup S(Vo(X), Uo(X)),

( 8 ) h/1--exp {(ro--So)/2a}/a,
Y-{(m, n)’m, n integers, m+n is even and n >_ 1}( 9 ) A- I-[ [((m-1)/, (m+ 1)/) (nh}],

(m, n) Y

where each factor is a horizontal line segment in the plane. We choose
a point a=(a} e A at random, and additionally we put ao-ml.

Suppose that our difference approximation v-v(t, x), u-u(t, x)
has been defined for (t, x)-a_,_ and a/,_. Let v, u be the solu-
tion of the Riemann problem (1) or t (n--1)h with initial values

Iv(a_,_)v((n-- 1)h, x)-- u((n- 1)h, x)- ’u(a-’-)
Iv (a/,_) ,u(a/,_)

or x ml, ml x respectively. Let
V(amn)-- V(amn), U(amn)-- U(amn)

and
v--v, u=u or (m--1)l<_x_(m+l)l, (n--1)h_tnh,

then v, u is a generalized solution in (n-1)h

_
tnh because



644 T. NISHIDA [Vol. 44,

v(t, x)=v(a,_), u(t, x)-u(a,_)
or x near the boundary (m-l)/by Lemma I and the definition o h
in (8). Thus we have the difference approximation v(t, x), u(t, x) or

VT>0 v/>0--<x< +, 0<t<T,
In order to obtain the uniform boundedness o v, u in OgtgT,

]x]gX and the uniform boundedness o its total variation with respect
to x or ]x]gX on t-const.0 and the continuity

(10) IvY(t,, x)-- v(t, x) + lug(t,, x) u(t, x) dx C. Its- t
-X

for vX>0
which assure [2] that some subsequence v, u of v, u converges in
LX(loc) as ]0 and the limit is a generalized solution of (1), (2), we
define the ollowing functional on J,, i= 1, 2, where J (or J) denote
the line-segments joining the mesh points a_,, a,_, a+,, (or
m-l,n m,n+l
(11) F(],) 2,(r+ s),
where r (or As) is the variation of the Riemann invariant r (or s) in
the first (or second) shock wave and Z is the sum of them for all
shocks on J,.

Lemma 3.
(12) F(J)gF(J).

By means of this lemma we may have the desired estimate. Since
the approximate solution has the finiteness of its dependence domain

because of [--]flJ=a/v<a.exp_ (- ro-So)2a and the choice of h in (8),

when we consider the approximate solution on t=t00,-XgxgX,
we may change it for large Ix] i.e., v(0, x)=Vo(-X-Cto), u(O, x)
=Uo(-X-Cto) for x{X+Cto. Let *, be the changed approximate
solution.

Following Glimm let/-curve J be any curve consisting of line-
segments joining the mesh points a,, a+,+ or a,n, a+l,_, on
which the mesh index m increases monotonically. If (12) holds, we
have
(13) F(J)gF(O) for *, and any/-curve J,
where 0 is the unique/-curve which passes through the mesh points
on t=0 and t=h, because of the succesive application of (12). Since
Riemann invariants r, s are decreasing in shock waves and increasing
in rarefication waves and Ar+ As<2r on the first shock, Ar+ As< 2As
on the second shock by Lemma 2, we obtain the following

total vat. {, }2 total vat. {V, *} g4F(J) g4F(0),
] shocks d

from this we have the uniform boundedness or V-r(, ), -s(, )
and so by/-curve J which coincides/-curve 0 for XX+Cto
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(14) total vat. {v, u} <_ total vat. (, t}
t=to, lx]KX J for Ixl<X

<_ C total vat. {, }<_C oal vat. {, }
J for ]x[KX t=O,]xl-<X+Cto

<_ C total vav. (v, u},
t=O,

(15) v(t, x)<_Vo(-X-Ct)+total vat. {}_<C for

lug(t, x) <_ ]Uo(-X-Ct) +total vat. (t} gC for ]x]<_X.

From these we have also (10).
Theorem 1. The Cauchy problem (1), (2) has a generalized solu-

tion in t>_O, which is locally bounded and has locally bounded total
variation in x on t-const. >0.

3. Piston problem. Here we consider the initial boundary
value problem (1), (3). The definition of the generalized solution v, u
of (1), (3) is the following" v(t, x), u(t, x) are bounded measurable
unctions in t_>0, x>_0 and satisfy the ollowing integral identity.

t>0,x>0

for any f ,
(17) .g +--.g dtdx+ o(x)g(O, z)gz-O

V
t>0,x>0

for any g e and g(t, 0)-0.
We see that the problem (1), (8) has a generalized solution in the

large. We use the modified Glimm’s difference scheme for the proof
of this existence theorem.

First we consider in t>O, x>O the initial boundary value problem
for (1) with the following data.
(18) v(O, x)=v+, u(O, x)--u+ for x>0,

u(t, O)--u_ for t >0,
where v/, u are const, s v/ > 0.

Lemma 4. The problem (1), (18) has a generalized solution in
t>_0, x>_0, which is piecewise continuous, piecewise smooth and also
satisfies the following estimate.

x)-r(v(, x), u(, x)) >_r(v+, u+)=_ r+,
(19) s(t, x)---s(v(t, x), u(t, x)) gmax {s+s(v+, u+), 2u_--r+},

.where z/s is the variation of Riemann invariant s in the second shock
in the solution, C is a const, independent of the data. Let

0- inf r(Vo(X), Uo(X)),
x20

s0--max {sup S(Vo(X), uo(x)), 2sup u(t)--ro}.
x>O O<t<T

Now we define the modified Glimm’s difference scheme as follows"
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Y={(m, n)’m=O, 2, 4, ..., n=l, 2, 3, ...},(20) A-- l-[ [(ml, (m/ 2)/) {nh}],
(m, n) E Y

where hl= exp [(r0- So) / 2a} / a. Let the mesh points a {a} be chosen
arbitrarily in A. Lemma 1 and Lemma 4 assure that the modified
Glimm’s scheme is defined for

), m >_ 2, be the smooth space-like line joiningLet/-curve i- (or "/

the mesh points a_,n, a which lies in (n-1)h t <_nh (or nh <_ t
(n+l)h) and does not pass through the point (nh, ml);i is the
straight line segment joining the points (nh+_ hi2, 0) and a0,. /-curve
J is composed o /-curves ’’z, m>_0 and the straight line segments
joining the mesh points an, a/,_ or a, a/,/ on which the mesh
index m increases monotonically.

Lemma 5.

(21) F(i/ <-F(i-) or m>_ 2,
F(i/) <_F(i-) / C. ul or re=O,

where F(. ) is the same as (11) and u=lu(nh+h/2)-u(nh-h/2)l.
From this lemma we have analogously the desired bounds for the

approximate solution v(t, x), u(t, x), that is, u has the uniform
boundedness 0f the locally total variation and u is uniformly locally
bounded, then v has the analogous estimate.

Theorem 2. The piston problem (1), (3) has a generalised solu-
tion in the large, which is locally bounded and has locally bounded
variation with respect to x>_O on t-const.>_0 and is continuous as
vector valued function in L(O<_x<_vX) from t>_O.
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