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142. Global Solution for an Initial Boundary Value
Problem of a Quasilinear Hyperbolic System

By Takaaki NISHIDA
(Cnmm. by Kinjiro KUNUGI, M. J. A., Sept. 12, 1968)

§ 1. Introduction. We consider the following system of equations
(1) 0v/0t—ou/dx=0, ou/0t+0(a*/v)/dx=0,
which is the simplest equation in gas dynamics (Lagrangean form in
the isothermal case : p=a?/v, a is a constant >0), where v is the specific
volume, % is the speed of the gas.

Here we consider the Cauchy problem in >0, —co<z< + oo for
(1) with the initial values
(2) (0, ) =v,(x), w0, x)=u,(x) for —co<x< +00
and also the piston problem (an initial boundary value problem) in
t>0, x>0 for (1) with the boundary values
(3) (0, ) =v,(x), w(0, x)=u,x) for x>0,

u(t, 0)=u,(t) for ¢>0,
where v,(2), u,(®), u,(t) are bounded functions with locally bounded
variation and v,(x) >0 =constant >0.

We see that the Cauchy problem (1), (2) and the piston problem
(1), (3) have generalized solutions in the large. We use the Glimm’s
(or slightly modified) difference scheme [2] for the proof of the exist-
ence theorems.

There are many articles [1]-[8] which treat the existence theorem
of the solution in the large for the initial value problem of the quasili-
near hyperbolic system of equations, where the system is more general
than in this paper, but the initial value is more restricted.

§ 2. Cauchy problem. Here we consider the Cauchy problem
(1), (2). The definition of the generalized solution v, % of the Cauchy
problem (1), (2) is the following : v(Z, x), u(t, x) are bounded measurable
functions and satisfy the integral identity

U(v fo— - fo)dtda + I 0,(2) £(0, &)dz=0

[[ng:+ @) gatdz + (u@g, sydz=0
t>0 t=0
for any continuously differentiable functions f, g with compact
support.
The system (1) is hyperbolic in »>0 and has the characteristics,
the Riemann invariants and the nonlinearity as follows :
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A=—(a/v), r=u+alogv;
p=a/v, s=u—alogv;
02/0r=0p/0s=(1/2a) exp {—(r—s)/2a}>0.
Concerning the Riemann problem (1) with the initial values

(4) w@={0"  w@={ w0

U, x>0

where v., %, are constants, v. >0,
we have the following lemma

Lemma 1. Riemann problem (1), (4) has a generalised solution
v(t, x), u(t, ) which is piecewise continuous and piecewise smooth,
and also satisfies the following a priori estimate.
(5) r(v(t, ), ut, ) =1, s, x), u(t, ) <s,,
where ry=min {r(v_, u_), r(v,, u,)}, S,=max {s(v, u:)}.

Lemma 2. The shock curve has the same figure in (r, 8) plane,
i.e., the first shock arising form r,, s, is represented by
6.1) s—8=f(r—ry) for r<r,
the second shock is
(6.2) ro—1=f(s,—s) for s<s,
where f(r) is independent of r, s, and an odd function in r and
0<f'(n<l.

Now we consider the Glimm’s difference scheme [2]. We approxi-
mate the initial values (2) by the step functions
(7 Y0, 2)=v,(ml), u 0, 2)=u,(ml)

for (m—DI<x<(m+1)I, YI>0, m: even,

and define
To=_ <in<f* r(v(2), U()), S=_ Sup s(vy(2), Uy(x)),
(8) h|l=exp {(r,—sy)/20}/a,

Y ={(m, n) : m, n integers, m+mn is even and n>1}
A= [ [m—DI, (m+1)])X{nh}],

(m,n)eY
where each factor is a horizontal line segment in the plane. We choose
a point a={a,,} € A at random, and additionally we put a,,=ml.
Suppose that our difference approximation v'=v'(¢t, ), u'=u'(¢, x)
has been defined for (¢, )=0,_1,,-1 and Gy ,-,. Let v, u be the solu-
tion of the Riemann problem (1) for ¢>(n—1)k with initial values
VY —1,n-1) _ U Gpp—1,n-1)
v(@—Dh, 2)= {vl(a’m+1,n—1)’ uln—Dh, ©)= {ul(am+1,n—1)
for x<<ml, ml<x respectively. Let
VU Umn) =V(Cmn)s U Cmn) =U(Gmn)

(9)

and
vVi=v, w=u for (m—DI<x<(m+DI, n—Dh<t<nh,
then v?, ! is a generalized solution in (n—1)h <t<nh because
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VIt 2=V Upnr1,n-1)s U, D) =UNCpz1,4-1)
for x near the boundary (m¥1)l by Lemma 1 and the definition of 2
in (8). Thus we have the difference approximation v'(¢, z), (¢, x) for
—oo<l < 400, 0KtLT, VT >0, VI>0.
In order to obtain the uniform boundedness of v, » in 0<t<T,
|2|<X and the uniform boundedness of its total variation with respect
to « for |2|<X on t=const. >0 and the continuity

(10) SX |0ty @) — VUt @) | + |4ty @) — ity @) | A< C-[ty—ts)
-x

for YX>0

which assure [2] that some subsequence v/, w/ of ¥!, ' converges in
L'(loc) as j—0 and the limit is a generalized solution of (1), (2), we
define the following functional on J;, i=1, 2, where J, (or J,) denote
the line-segments joining the mesh points ,_; ., Gpa-1y Cpir g (OF
am—l,m a’m,n+17 a’m+1,n),
(1L F(J)=2;,(dr+4s),
where 4r (or 4s) is the variation of the Riemann invariant # (or s) in
the first (or second) shock wave and 2, is the sum of them for all
shocks on J,.

Lemma 3.
12) F(J),<F(J).

By means of this lemma we may have the desired estimate. Since
the approximate solution has the finiteness of its dependence domain

because of || =|py|=a/v<a-exp (—%&i) and the choice of % in (8),

when we consider the approximate solution on t=t,>0, - X<2<X,
we may change it for large |x| i.e., v¥(0, x)=v,(—X—Ct,), u{0, x)
=uy(—X—Ct,) for |x|>X+Ct,. Let ¥, % be the changed approximate
solution.

Following Glimm let I-curve J be any curve consisting of line-
segments joining the mesh points ., ., Gui1n41 O Qpny Gpir nog, ON
which the mesh index m increases monotonically. If (12) holds, we
have
13) F(J)<F(0) for ', %' and any I-curve J,
where 0 is the unique I-curve which passes through the mesh points
on t=0 and t=rF, because of the succesive application of (12). Since
Riemann invariants 7, s are decreasing in shock waves and increasing
in rarefication waves and 4r-4- 4s<24r on the first shock, 4r+ 4s<24s
on the second shock by Lemma 2, we obtain the following

totalJ var. {7, §}1<2 total var. {i, §'}<4AF(J)<4F(0),

shocks on J
from this we have the uniform boundedness or # =%, @"), §'=s(*, %)
and so by I-curve J which coincides I-curve 0 for | X|>X + Ct,
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(14) total var. (v, u't<total var. {v', i'}
t=to, |2|<X J for |z|<X

<C total var. {¥, §}<C total var. {¥, §%}
J for |z|<X t=0,|2|<X+Cto

<C total var. {v¢, u'},

t=0,|x|<X+Cto

15) VUt, 1) <vy(—X —Ct)+total var. ('} <C for |z|<X
J
[ul(t, ) | < |u(—X—Ct)| +total var. {#'}<C for |z|<X.
J
From these we have also (10).

Theorem 1. The Cauchy problem (1), (2) has a generalized solu-
tion in t>0, which is locally bounded and has locally bounded total
variation in x on t=const.>0.

§ 3. DPiston problem. Here we consider the initial boundary
value problem (1), (8). The definition of the generalized solution v, %
of (1), (8) is the following: v(¢, x), u(t, x) are bounded measurable
functions in t>0, >0 and satisfy the following integral identity.

ao) || @-si—wroataz+ | v, x)dw+g°°u1(t>f(t, 0)dt=0
t>0,2>0 o 0 0
for any fe C',
an [ (w0:+ % 0.)ataa+ | u@oc, syaz=0
t>0,2>0 v o 0
for any g ¢ C* and g(¢t, 0)=0.

We see that the problem (1), (3) has a generalized solution in the
large. We use the modified Glimm’s difference scheme for the proof
of this existence theorem.

First we consider in ¢>0, >0 the initial boundary value problem
for (1) with the following data.

(18) (0, x)=v,, w0, x)=1u, for >0,
u(t, 0)=u_ for t>0,
where v,, u, are const. s v, >0.

Lemma 4. The problem (1), (18) has a generalized solution in
t>0, x>0, which is piecewise continuous, piecewise smooth and also
satisfies the following estimate.

(t, ©)=r(vE, ), ul®, ) >r@,, u)=r,,
a9 s(t, x)=s((t, x), u(t, v))<max {s,=s(v,, u,), 2u_—r,},
As<Clu,—u_|=C- du,
where 4s is the variation of Riemann invariant s in the second shock
in the solution, C is a const. independent of the data. Let
To=i15 7(v(2), u()),

Sp=max {sup s(vy(x), u,(x)), 2sup u,(t) —7,}.
20 0<t<T

Now we define the modified Glimm’s difference scheme as follows:
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(20) { Y={(m,n):m=0,2,4, ...,2=1,2,8, ...},
A= ﬂer[(ml, (m+2)) X {nh}],

(m,n)

where h/l=exp {(1,—$,)/2a}/a. Let the mesh points a={a,,,} be chosen
arbitrarily in A. Lemma 1 and Lemma 4 assure that the modified
Glimm’s scheme is defined for 0<¢t<VT,

Let 4-curve %~ (or i%"), m>2, be the smooth space-like line joining
the mesh points @, 4, @, Which lies in (n—1)A<t<nh (or nh<t
<(n+1)h) and does not pass through the point (nk, ml);iz* is the
straight line segment joining the points (nh+h/2, 0) and a, ,. I-curve
J is composed of i-curves 2%, m>0 and the straight line segments
joining the mesh points @y, Amig,n-1 OF Gppy Cpyys nsa ON Which the mesh
index m increases monotonically.

Lemma 5.

@1) F@rn)<F@r) for m>2,
F@r)<F@p-)+C- du, for m=0,
where F'(-) is the same as (11) and du,=|u,(nh+h/2) —u,(nh—h/2)|.

From this lemma we have analogously the desired bounds for the
approximate solution (¢, x), w'(t, x), that is, #' has the uniform
boundedness of the locally total variation and «! is uniformly locally
bounded, then v' has the analogous estimate.

Theorem 2. The piston problem (1), (8) has a generalised solu-
tion in the large, which is locally bounded and has locally bounded
variation with respect to x>0 on t=const.>0 and is continuous as
vector valued function in LX0<Lx2<YX) from t>0.
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