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139. A Note on Inverse Images of Closed Mappings

By F. G. SLAUGHTER, Jr.
The University of Pittsburgh

(Comm. by Kinjird KUNUGI, M. J. A., Sept. 12, 1968)

This paper is concerned with three results pertaining to the fol-
lowing problem. Given a mapping f in class C with the range of f
in class 9), when will the domain of f be in class £? In case f is a
closed continuous mapping onto a paracompact Hausdorff space, S.
Hanai [2, Theorem 5, p. 302] has given necessary and sufficient con-
ditions for the domain of f to be normal. In Theorem 1, we provide
another proof for Hanai’s result, and in Theorem 2, under the same
hypothesis on f, we obtain analagous necessary and sufficient condi-
tions for the domain of f to be collectionwise normal. Under fairly
restrictive hypothesis, Theorem 4 gives necessary and sufficient con-
ditions for the domain of a mapping to be an M-space in the sense of
Morita [6, p. 379].

In what follows, all mappings are assumed to be continuous. As
usual, if X is a set, F={F,: a € A} a collection of subsets of X, and
SCX, welet F|S={F,NS:acAl

Let f be a mapping from X to the T, space Y, C a closed subset
of X, and m a cardinal number. f satisfies condition 7, at C iff for
any discrete collection {C,: @ € A} of <m closed subsets of C, there
exists a pairwise disjoint open collection {U,: @ € A} such that C,CU,
for all @. If f satisfies condition 7, at C for all cardinals m, we say
that f satisfies condition y at C.

Lemma 1.1. Let f be a closed mapping from the topological
space X onto the T, regular space Y. Suppose that f satisfies condi-
tion 7, at f~'(y) forally in Y. Then for any y in Y, closed subset C
of (), and open set U containing C, there exists an opeu set V such
that CCVCVCU.

Proof. Let the closed set C of f~'(%) be contained in the open set
0. Using condition 7,, choose open sets W, and W, of X containing C
and (X —0)N f~*(y) respectively. Then K=(X—0)—W, is closed and
misses f~(y). Hence by regularity of Y, choose an open set P of ¥
with y e PCPCY —f(K). If V=W,N f-(P), then V is as desired.

Theorem 1. Let f be a closed mapping from the topological
space X onto the paracompact Hausdorff space Y. X is normal iff f
satisfies condition y, at f~'(y) for all y in Y.
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Proof. We show that every finite open cover of X has a locally
finite closed shrink., Let U={U;::i=1,2,  .-,n} be an open cover of
X. For each yin Y, f~'(y) is normal and hence V| f~*(y) hasa 1—1
closed shrink ¥,={F,;:1=1,2, ...,n} covering f~'(y). By Lemma
1.1, for each y in Y, we obtain open covers ¢{/,={V,;:1=1,2, --.,n}
of f(y) such that F,,CV,,CV, ,CU, for all ¢ and y in Y. Let 0,
=U{V,,:4=1.2,---,n} and let P,=Y — f(X—0,) for y in Y. Then
P={P,:ye Y} is an open cover of the paracompact space Y with a
locally finite open refinement 9W={W,:yeY}. Then Z={f-*W,)
NV,::yeY,i=1,2,...,n}is a locally finite open cover of X. Also,
since - (W,)NV,, =V, CU,, then Z<9. Thus X is normal.

Theorem 2. Let f be a closed mapping from the topological
space X onto the paracompact Hausdorff space Y. X is collectionwise
normal iff f satisfies condition y at f~(y) for all y in Y.

Proof. Since necessity is clear, we only prove sufficiency. Since
J satisfies condition 7, at f~*(y) for all y in Y, X is normal by Theorem
1. By a result of Dowker [1, Lemma 1, p. 308], to show that X is
collectionwise normal, it suffices to show that X is normal and that
for any closed set C of X and locally finite relatively open cover U of
C, there exists a locally finite open cover C{/ of C such that /| C <.
Thus let U={U,: a € A} be a locally finite relatively open cover of the
closed subset C of X. Let 9¥/={W,:a € A} be an open collection in X
such that U,=W,NC for a in A. Let Yo={y:yin Y and f*(y)NC
#¢}. Then for each y in Y, by arguing as in Dowker’s Lemma 1
above with respect to the locally finite relatively open cover 9% | (f~(y)
NC) of f~*(y)NC for which condition 7 holds, we obtain locally finite
open collections Z,={Z, ,: a € A} covering f~(y)NC with Z, ,CEW,
for all« in A. For each y in Y, let 0,=UZ,U(X—C). Note that
if ¥’ isin Y and f~*(¥")<0,, then f~'(y") N C is covered by Z,. Clearly
0,)=s""(Y—f(X—-0,)) contains f~*(y) for all ¥ in Y, and thus

{f10,)]: v € YU - f(C))
is an open cover of Y. By paracompactness of Y, obtain a locally
finite open collection P={P,:ye Y.} in Y covering f(C) such that
P, f1(0,),] for y in Y,. Consider now
Y={V,.=f*PINZ,,:yeYs acA}.
CY/ is a locally finite open collection and clearly
v,.nC=rPynz,,Nnccz, NCcwW,NC<U,

for yin Yo and « in A. Thus ¢ |C refines U. It remains to show
that €IV covers C. But if p is in C, then since @ covers f(C),f(f(p))
Cf(P,) for some y in Y,. Hence f(f(»)<=(0,),=0,. But as we
have noted earlier in the proof, pe f(f(P)NCZUZ, and hence
peZ,, for some «. Thus p is in f~(P)NZ,,=V,. and ¢/ covers
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C. Thus X is collectionwise normal.

Corollary 1.2. Let f be a closed mapping from the topological
space X onto the paracompact Hausdorff space Y. Then X is collec-
tionwise normal iff f-'(y) ts collectionwise normal and Bdry f~(y)
satisfies condition y for all y in Y.

Proof. Necessity is clear. Itisan easy consequence of Theorem
1 that X is normal. A routine argument shows that f-(y) satisfies
condition y for all ¥ in Y. Thus by Theorem 2, X is collectionwise
normal,

Corollary 1.3. Ewery normal M-space is collectionwise normal.

Proof. Let X be a normal M-space and f a closed mapping from
X onto a metric space Y, where f~'(y) is countably compact for all y in
Y. The existence of such a map is guaranteed by Morita [6, Theorem
6.1, p. 379]. Since every discrete collection in f-'(y) is normal, f-*(y)
satisfies condition y for all ¥ in Y. Thus X is collectionwise normal.

We now turn to the development of some mapping theorems for
M-spaces. For the definition of M-space (M*-space) see [6, p. 379]
(I8, p. 752]). It is easy to see that these definitions are equivalent to
the following: There exists a normal sequence {U,;:¢=1,2, ---} of
open coverings (a sequence {F;:¢=1,2,...} of locally finite closed
coverings) of X satisfying the condition below :

If {«;} is a sequence in X with ;e St(x, U,) (»; € St(x, F,)) for

() every ¢ and some z in X, then {x,} has a cluster point.
We say that a collection {U,: « € A} of open sets is a base at the
subset S of the topological space X iff for any open neighborhood V
of S there exists U, such that SCU,CV. X is first countable at S iff
X has a countable base at S. A space is countably compact if each of
its countable open covers has a finite subcover.

It is well known that if X is compact Hausdorff, then X is first
countable at its point p iff p is a G, point of X. Generalizing this we
have

Lemma 1.4. Let X be a M*-space and C a countably compact
subspace. If the closed neighborhoods of C are a base at C and if C
is a G, set, then X is first countable at C.

Proof. Let {¥;} be a sequence of locally finite closed covers of X
with &F,,, <%, for all ¢ and {¥F;} satisfying (). Then as in Ishii [3,
Lemma 2.2, p. 752], we see that {St(C,%):¢=1,2,---} has the
property that if {x;} is a sequence in X with «, e St(C, &,) for all 1,
then {x;} has a cluster point in X. Since &, is locally finite, for each
1 we have CC[St(C, F))I°. Using the additional facts that C is a G,
with its closed neighborhoods as a base, we can construct a sequence
{V} of open neighborhoods of C such that V.uCV, for all i, N{V,:14
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=1,2, ...}=C and if {z,;} is a sequence with x, e V, for all 4, then {z;}
has a cluster point. Clearly {V.,} is a local base at C and X is first
countable at C.

Corollary 1.5. If X is T, regular and a M*-space, then o com-
pact subset C is a G, set iff X is first countable at C.

It is easy to see that if {U,} is a localy base for the countably
compact subset C of the topological space X, and if U,,,C U, for all 1,
then any sequence {x;} with z, in U, for all ¢ has a cluster point in C.

Theorem 3. Let f be a closed mapping from the normal T, space
X onto the countably compact space Y. Let X be first countable at
each of its closed countably compact subsets. Then X is an M-space
iff f-2(y) s an M-space for each y in Y.

Proof. Necessity is clear so we prove sufficiency. Thus assume
that f-(y) is an M-space for all ¥ in Y. Since X is normal, in order
to see that it is an M-space, it suffices to exhibit a sequence {U,: <
=1,2, ...} of locally finite open covers satisfying the condition (x).
Slightly modifying the argument of [7, Lemma 1, p. 10] in the obvious
way, we have that Bdry f-'(y) is countably compact for all y in Y. It
is easy to see from the closedness of f and the countable compactness
of Y that K= U{Bdry f~%(y):ye Y} is closed and countably compact.
Choose a base {V,;} at K of open sets with V,,,CV, for alli. Also for
each v in Y, since f~*(y) is an M-space, we can choose sequences
{U,::%=1,2,---} of relatively open locally finite covers of f~'(y)
which satisfy condition (x). For each 7 let

W= U{U, | X=Via:iye YIU{V,}.

Then clearly for each 7, 9, is a locally finite open cover of X. We
show that {9}/;} satisfies condition (x). To do so, suppose that {z;} is
a sequence in X with z; € St (x, 9,) for each ¢ and some z. If ze¢ K,
then ;e V, for all ¢ and hence {z;} has a cluster point in K. If x is
not in K, then there exists ¥ in Y with xe[f*(¥)]°. Since N{V,:¢
=1,2, ...}=K, there exists n(x) such that if j>n(x), then  is not in
V,. Thus we have that x, e St(z, U,,;) if j>n(x) and since {U,,;: ¢
1,2, . ..} satisfies condition (x), {#;} has a cluster point. Hence X is
an M-space.

By a similar argument, Theorem 3 still holds if “M-space” is
replaced everywhere by “M*-space”.

Theorem 4. Let f be a closed mapping from the normal T, space
X onto the paracompact, locally compact space Y. Let every compact
setin X be a G,. Then X is a paracompact M-space iff f~(y) is a
paracompact M-space for all y in Y and X is first countable at each of
its compact sets.

Proof. Necessity. Let X be a paracompact M-space. Clearly,
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for all y in Y, f~*(y) as a closed subset of X is a paracompact M-
space. Since X is an M*-gpace and each of its compact subsets is a
G;, by Corollary 1.5 X is first countable at each of its compact sets.

Sufficiency. For all y in Y, assume that f-(y) is a paracompact
M-space and assume that X is first countable at each of its compact
sets. It is easy to see from [7, Lemma 1, p. 10] that Bdry f-*(y) is
countably compact for each y in Y. Thus since Bdry f-(y) is para-
compact and T, it is compact for all ¥ in Y. Applying [3, Corollary
2.4, p. 304], X is paracompact. Let CI/={V,:a € A} be a locally finite
collection of compact subsets of Y which covers Y. Since X is first
countable at each of its compact and hence countably compact sets,
we can apply Theorem 3 to f-%(V,) and f|f*(V,) to conclude that
fY(V,) is an M-space for all ¢ in A. Then {f~(V,): a e A} is locally
finite and a closed cover of X by M-spaces. As Morita has noted, it
is an easy consequence of [4, Theorem 1.1, p. 757] that X is an M-
space.

Corollary 1.6. Let X be a normal T, space with point-countable
base. Let f be a closed mapping from X onto the paracompact,
locally compact space Y. Then X is a paracompact M-space iff f~(y)
is a paracompact M-space for all y in Y.

Proof. Necessity is trivial. For sufficiency, merely note that
by [5, Theorem 1, p. 855], X is first countable at each of its compact
sets. Thus by Theorem 4, X is a paracompact M-space.
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