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128, A Milnor Conjecture on Spin Structures
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Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro SHODA, M. J.A., Sept. 12, 1968)

Let £ denote a principal SO(n)-bundle over a CW-complex B and
let E(&) denote the total space of £&. A spin structure on £ is a pair
(n, f) which satisfies

(1) A principal bundle » over B with the spinor group Spin(n)
as structural group ; and

(2) A map f:E@—E() such that the following diagram is
commutative.

E () x Spin(n) —»E(v) Np

Fxa
B % s0m— B
Here A denotes the standard homomorphism from Spin(n) to SO(n)
and horizontal lines denote the right translation. A second spin
structure (/, /) on & is identified with (», f) if there exists an iso-
morphism g from 7’ to » so that fog=jf’. Then J. Milnor stated the
following conjecture [1, pp. 198-203] :

If (y, /) and (%, f’) are two spin structures on the same SO(n)-
bundle, with »>>dim B, then 7 is necessarily isomorphic to 7’.

In this note we shall present the affirmative answer when B is
compact connected. By Milnor we have the following

Lemma [1, p. 199]: If £ admits a spin structure then the number
of distinct spin structures on & is equal to the number of elements in
H'(B; Z,).

Now the following lemma is clear.

Lemma 1. If & admits two spin structures (y, ) and (v, f/)
such that n is isomorphic to v’ then there exists a spin structure
(), ) on & which is isomorphic to (7, f7).

Let p, denote the projection map of the bundle £&. If two spin
structures (», 1), (, f») are given, from p,=p.fi=p.f,, we have a
map g : E()—S0(n) defined by f,(x)=f(x) - g(x) for x e E(y). Here -
denotes the right translation. Clearly g satisfies g(x-h)=A(h)"*x g(x)
X A(h) for h e Spin(n) where x denotes the group multiplication.
Conversely g is a map as above and let (», f) be a spin structure on §.
Then (5, f-9)" is also a spin structure on §&. And moreover let g’ be
another map such as g. Then (y, f-9) is isomorphic to (, f-9’) if

1) Of course the map f-g is defined by (f-9) (x)=Ff(x)-9(z).
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and only if there exists a map ¢ : E()—Spin(n) which satisfies ¢(x-h)
=h"'X (@) X h and g(x)=g'(x) X A(p(x)). Now we define two groups
{E(n), SO(n))y and <(E(n), Spin(n)) as follows:

(E(y), SOm)y={g : E())—SOMm), g(@-k)=A1)"x g(z) x A(h)}

KE(p), Spin(n)>={¢p : E(n)—Spin(n), ¢(x-k)=h"* X ¢(x) X h}.
Obviously A4 induces a homomorphism 4, : <{E(n), Spin(n)>—<{E(y),
SO(n)> and if B is connected 4, is injective. Let <> denote the set
of spin structures on £ having 7 as the bundle of structures. By the
above argument we have

Lemma 2. The number of {y) is equal to the number of cosets
of <E(p), SOm)) by 2,{E(xn), Spin(n).

Let (9, f,) be a spin structure on § and define the group

CE(§), SOm))>={y; E(§)—S0m), ¥(x-9)=g~* X ¥(x) X g}.
It is obvious that f, induces the homomorphism f,, ; <E(£), SO(n)>
—(E(n), SO(n)> defined by f,(y)=+of,. Since the kernel of 2 is con-
tained in the center of Spin(n) we have

Lemma 3. When B is compact f,, is the isomorphism.

Now consider the inverse image of 1,{(E(n), SO(n))> by fisx. Let
(E(&), SO(n)) denote the subgroup of (E(§), SO(n)> consisting on ele-
ments which have a lifting: E(£)—Spin(n). Then analogously to
Lemma 3 we have

Lemma 4. [ ,(E(§), SOM))=2A,(E(®), Spin(n)).

Combining Milnor’s lemma with the above lemmas we have

Lemma 5. When B is compact and connected the number of ele-
ments of H'(B, Z,) is equal to the product of the number of cosets of
CE(&), SO(m)> by (E(&), SOm)) with the number of bundles which
give a spin structure on &,

Let B, denote the classifying space for a topological group G and
let x, denote the characteristic map: B—B, for a G-bundle §. The
homomorphism A : Spin(n)—SO(n) usually induces the correspondence
B,: (B, Bgyinmy)—7(B, Bgomy). Then it is clear that the number of the
inverse image of x, by B, is equal to the number of bundles which
give a spin structure on &. If n is larger than dim B, then
(B, Bgomy)» (B, Bgyny) are equal to (B, Bgo(.,), T(B, Bgyy(..,) respec-
tively. Hence we give a group structure to =n(B, By, and
(B, Bgomy) so that B, is a homomorphism. These considerations
show that the number of bundles which give a spin structure on & is
independent on &, therefore the number of cosets of <E(§), SO(n)> by
(E(&), SO(n)) is also free from &. That is to say the case is only
necessary for our purpose that £ is trivial. Now we suppose that &
is trivial. Let {B, SO(n)} denote the group consisting on all maps:
B—8S0(n) and let p denote the standard cross-section : B—E(£). It is
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easily shown that the homomorphism p, : <E(§), SO(n)>—{B, SO(n)} is
bijective where p, is defined by p,(@)=dop. Clearly p,(E (&), SO®))
is contained in 4,{B, Spin(n)}.

Conversely, for a map Ay, ¥ : B—Spin(n), define a map ¢: E(§)
—-8S0(m) by @0, 9)=97"*xA((b))xg. Then ¢ is an element of
(E(&), SO(n)) such that p,(¢)=2y. Let v be a map: E(£§)—Spin(n)
defined by (b, 9)=h"x () x h for A(h)=g. Since the kernel of 1 is
contained in the center of Spin(n) v is well defined and continuous.
By /2«;7=¢ we can know that ¢ is an element of (E(§), SO(n)), i.e., we
have

Lemma 6. p, is bijective and maps the subgroup (E(§), SO(n))
onto the subgroup A,{B, Spin(n)}.

Let X, denote the cohomology class of 4 (SO(n); Z,) which re-
presents the Z,-bundle Spin(n)—SO(n). Consider a homomorphism
0 :{B, SO(n)}—IH (B, Z,) defined by ?(¢)=¢*(X,). Now we suppose
that &(¢)=0. It is known that if we identify H*(SO(n), Z,) with
Hom(z,(SO(n)), 7,(SO(n))) X, is correspond to the identity. Since B is
connected, we can also identify 9(*(B, Z,) with Hom(H,(B), 7,(SO(n))).
Then ¢*(X,) is interpreted as the composite homomorphism :

ﬂl(B)—qS;» I(SO(n)) %—ﬂl(SO(n))—i(T m,(SO(n)).

Hence 9(¢)=0 implies that the homomorphism ¢, : 7,(B)—m,(SO(n))
is trivial, i.e., ¢ can be lifted. Hence we have

Lemma 7. @ induces the injection :

{B, SO(m)}/ 24{B, Spin(n)}—-IH*(B ; Z,).

If n>dim B we can take the real projective space PR"™* as the
classifying space for Z,-bundles over B. On the other hand [2, p. 97]
there exists an imbedding P, : PR**—S0O(n) such that P *: H*(SO(n);
Z)—Y"(PR"; Z,) is bijective. Thus we have

Lemma 8. @:{B, SO(n)}/,{B, Spin(n)}—H B ; Z,) is bijective.

From lemmas we obtain our main theorem.

Theorem. Let B be a compact connected CW-complex. If a
principale SO(n)-bundle over B admits two spin structures (), f) and
', ), with n>dim B, 7 ts necessary isomorphic to ’.
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2) Non-zero element of H(SO(n); Z,)=2Z,.



