127. ☐-imbeddings of Homotopy Spheres

By Kiyoshi KATASE

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1968)

1. Let Θ_n be the group of homotopy n-spheres and let us consider the π -imbedding (i.e., imbedding with a trivial normal bundle) of $\tilde{S}^n \in \Theta_n$ in the (n+k)-dimensional euclidean space R^{n+k} .

If \tilde{S}^n is π -imbeddable in R^{n+k} , then the connected sum $\tilde{S}^n \sharp \tilde{S}^n$ is also π -imbeddable in R^{n+k} . Thus we want to determine the smallest codimension with which the generator \tilde{S}^n_0 of Θ_n is π -imbeddable.

In [1], W. C. Hsiang, J. Levine, and R. H. Szczarba showed that every homotopy n-sphere is π -imbeddable in R^{n+k} if $k \ge n-2$ for all n or $k > \frac{n+1}{2}$ for $n \le 15$. They also showed that $\tilde{S}_0^{16} (\in \Theta_{16} \cong \mathbb{Z}_2)$ is not π -imbeddable in R^{29} .

Now, owing to the classification theorem of S. P. Novikov [6], we can calculate the number of the differentiable structures of a direct product of spheres and this gives us some informations on our problem. In this way, we obtain the following results.

n	8	9	10	13	14	15	16	17
$\begin{array}{c} \text{order of} \\ \Theta_n \end{array}$	2	8	6	3	2	16256	2	16
$\operatorname{order} \operatorname{of} \ \Theta_n(\partial \pi)$	1	2	1	1	1	8128	1	2
k	4	4	4~6	3~4	?~8	3~4	14	?~13

(k is the smallest codimension with which the generator of Θ_n is π -imbeddable.)

If $\Theta_n = 0$ or $\Theta_n(\partial \pi)$, then k = 1 or 2 respectively ([3], Theorem I).

2. Lemma 1. If $\tilde{S}^n(n \geq 5)$ is π -imbeddable in R^{n+k} , then $\tilde{S}^n \times S^{k-1}$ is diffeomorphic to $S^n \times S^{k-1}$.

The proof is the same as that of Theorem 5.2 in [7].

Conversely, we have

Lemma 2. If $\tilde{S}^n \times S^{k-1}$ and $S^n \times S^{k-1}$ are diffeomorphic modulo a point, then \tilde{S}^n is π -imbeddable in R^{n+k} .

Proof. Since $(\tilde{S}^n \times S^{k-1}) \# \tilde{S}^{n+k-1}$ is diffeomorphic to $S^n \times S^{k-1}$ and \tilde{S}^{n+k-1} can be summed to $\tilde{S}^n \times S^{k-1}$ away from $\tilde{S}^n \times x_0$ for some point $x_0 \in S^{k-1}$, the imbedding

$$\tilde{S}^n \subset (\tilde{S}^n \times S^{k-1}) \# \tilde{S}^{n+k-1} \approx S^n \times S^{k-1} \subset R^{n+k}$$

has a trivial normal bundle.

From these lemmas, we have

Corollary 3. A necessary and sufficient condition for $\tilde{S}^n \times S^{k-1}$ and $S^n \times S^{k-1}$ to be diffeomorphic modulo a point is that they are diffeomorphic.

Thus our problem is reduced to finding the smallest k such that $\tilde{S}_0^n \times S^{k-1}$ is diffeomorphic modulo a point to $S^n \times S^{k-1}$, and hence the classification theorem of Novikov is useful.

Let E^{N-k+1} ; $\pi_{n+k-1}(S^{k-1}) \longrightarrow G(n) = \pi_{n+N}(S^N)$ be the (N-k+1)-fold suspension homomorphism and let J_n ; $\pi_n(SO_N) \longrightarrow G(n)$ be the stable J-homomorphism. Then the classification theorem applied to $S^n \times S^{k-1}$ ([6], Theorem 11.5) can be restated as follows.

Theorem 4. If $E^{N-k+1}(\pi_{n+k-1}(S^{k-1})) \cup J_n(\pi_n(SO_N)) = G(n)$, then \tilde{S}_0^n is π -imbeddable in R^{n+k} .

3. As for the notations, we follow the usage in H. Toda [8].

The case n=8. Levine showed that \tilde{S}_0^8 is imbeddable in R^{12} and is not imbeddable in R^{11} ([4]).

Let λ be the generator of $\pi_7(SO_N) \cong Z$ and let η_7 be the generator of $\pi_8(S^7) \cong Z_2$, then $\pi_8(SO_N) = Z_2[\lambda \circ \eta_7]$. Since $J_7(\lambda)$ generates $G(7) = Z_{16}[\sigma] + Z_3[\alpha_2] + Z_5[\alpha_{1,5}]$, it follows that $J_8(\lambda \circ \eta_7) = \sigma \circ \eta = \varepsilon + \overline{\nu}$ ([8], Theorm 7.1).

On the other hand, $\pi_{11}(S^3) = Z_2[\varepsilon_3]$ where $E^{N-3}(\varepsilon_3) = \varepsilon$. Hence $E^{N-3}(\pi_{11}(S^3)) \cup J_8(\pi_8(SO_N)) = G(8) = Z_2[\varepsilon] + Z_2[\overline{\nu}]$ and it follows from Theorem 4 that \tilde{S}_0^8 is π -imbeddable in R^{12} .

The case n=9. Levine showed that \tilde{S}_0^9 is imbeddable in R^{13} and is not imbeddable in R^{12} .

Since $\pi_9(SO_N) = \mathbb{Z}_2[\lambda \circ \eta_7 \circ \eta_8]$, it follows that $J_9(\lambda \circ \eta_7 \circ \eta_8) = \sigma \circ \eta^2 = \nu^3 + \eta \circ \varepsilon$, ([8], Lemmas 6.3 and 6.4).

On the other hand, $\pi_{12}(S^3) = Z_2[\mu_3] + Z_2[\eta_3 \circ \varepsilon_4]$ where $E^{N-3}(\mu_3) = \mu$ and $E^{N-3}(\eta_3 \circ \varepsilon_4) = \eta \circ \varepsilon$. Hence $E^{N-3}(\pi_{12}(S^3)) \cup J_9(\pi_9(SO_N)) = G(9) = Z_2[\nu^3] + Z_2[\mu] + Z_2[\eta \circ \varepsilon]$ and it follows that \tilde{S}_9^0 is π -imbeddable in R^{13} .

The case n=10. Levine showed that \tilde{S}_0^{10} is imbeddable in R^{16} and is not imbeddable in R^{13} .

Although $\pi_{10}(SO_N)=0$, we know that E^{N-5} ; $\pi_{15}(S^5)\longrightarrow G(10)$ is epimorphic ([8], Theorems 7.3 and 13.9). Hence \tilde{S}_0^{10} is π -imbeddable in R^{16} . But E^{N-4} ; $\pi_{14}(S^4)\longrightarrow G(10)$ is not epimorphic, so we can not tell whether \tilde{S}_0^{10} is π -imbeddable in R^{15} or not.

The case n=13. Since $E^{N-8}(\pi_{10}(S^8))=G(13)$ ([8], Theorem 13.10), \tilde{S}_0^{13} is π -imbeddable in R^{17} .

But we can not tell whether \tilde{S}_0^{13} is π -imbeddable in R^{16} or not since $\pi_{13}(SO_N)=0$ and $E^{N-2}(\pi_{15}(S^2))=0$.

The case n=14. It is known that \tilde{S}_0^{14} is π -imbeddable in R^{22} ([1]). But we can not decrease the codimension by our method.

The case n=15. In this case, we know that $\pi_{18}(SO_N) \cong \mathbb{Z}$ and the

generator ρ of $G(15)=Z_{32}[\rho]+Z_2[\overline{\epsilon}]+Z_3[\alpha_4]+Z_5[\alpha_{2,5}]$ belongs to Im J_{15} (see, for example, [5]).

On the other hand, we know that $E^{N-3}(\pi_{18}(S^3)) = \mathbb{Z}_2[\bar{\epsilon}] + \mathbb{Z}_3[\alpha_4] + \mathbb{Z}_5[\alpha_{2,5}]$ ([8], Theorems 10.5, 13.10, and Proposition 13.6). Thus we have $E^{N-3}(\pi_{18}(S^3)) \cup \mathbb{Z}_{15}(\pi_{15}(SO_N)) = G(15)$, and it follows that \tilde{S}_0^{15} is π -imbeddable in R^{19} .

But we can not tell whether \tilde{S}_0^{15} is π -imbeddable in R^{18} or not.

The case n=16. We know that \tilde{S}_0^{16} is π -imbeddable in R^{30} and there exists an imbedding in R^{29} with a non-trivial normal bundle ([1]). Since every imbedding is isotopic in this case, we have that \tilde{S}_0^{16} is not π -imbeddable in R^{29} .

The case n=17. Since we know that E^{N-12} ; $\pi_{29}(S^{12}) \longrightarrow G(17)$ is epimorphic ([8], Theorem 12.17), \tilde{S}_0^{17} is π -imbeddable in R^{30} . But we can not decrease the codimension by our method.

References

- [1] W. C. Hsiang, J. Levine, and R. H. Szczarba: On the normal bundle of a homotopy sphere embedded in Euclidean space. Topology, 3, 173-181 (1965).
- [2] M. A. Kervairé: On higher dimensional knots. Differential and combinatorial topology. Princeton Math. Ser., No. 27, 105-119 (1965).
- [3] M. A. Kervaire and J. W. Milnor: Groups of homotopy spheres. I. Ann. of Math., 77, 504-537 (1963).
- [4] J. Levine: A classification of differentiable knots. Ann. of Math., 82, 15-50 (1965).
- [5] M. Mahowald: On the order of the image of J. Topology, 6, 371-378 (1967).
- [6] S. P. Novikov: Homotopically equivalent smooth manifolds. I (in Russian). Izv. Akad. Nauk S. S. S. R. Ser. Mat., 28, 365-474 (1964).
- [7] S. Smale: On the structure of manifolds. Amer. J. Math., 84, 387-399
- [8] H. Toda: Composition methods in homotopy groups of spheres. Ann. of Math. Studies, No. 49 (1962).