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222. Remark on Yokoi’s Theorem Concerning the Basis
of Algebraic Integers and Tame Ramification

By Yoshimasa MIYATA
(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1968)

In this paper we shall prove a theorem (Theorem 1 in the follow-
ing) which, the author thinks, is essentially a refinement of Yokoi’s
theorem (Theorem 2 of [2]). From it follows a characterization of
tame ramification, which we shall state as Theorem 2.

Theorem 1. Let k be a finite algebraic number field and K|k be
o cyclic extension of prime degreel. Let o and O be the rings of al-
gebraic integers of k and K. Then we have the following basis x,, y,,
2, =1, .-, ¢, j=t+1, -+, n, m=1, .-, n((—1)) of O over the ra-
tional integer ring Z, t.e. :

50:2[9-'71, oy By Yewrs Yny B1y 00y zn(l-1)]
such that ., -+, sy SgiYrsr,.e.r Skuln cONsist a basis of o over Z
and Sk2n=0 for L<m<n(l—1), where Sk, denotes the relative trace
of K to k.®

Let H be the Galois group of K/k. We denote the group ring Z[H]
of H over Zby A. Obiously O is a A-module. We consider it as a
representation module of H (accordingly of A).

Theorem 2. Let K/k and O be as in Theorem 1. Then K|k is
tamely ramified at every prime ideal of k if and only if no A-module
on which H acts trivially appears as a direct summand of O (consider-
ed as A~-module).

At first we state the following well known facts which are useful
in the proof of the theorems; let H be a cyclic group of prime order
l (for example, the Galois group of K/k stated in the above) and A=2Z
[H] be its group ring over Z (as before). Let % be a fixed generator
of H and let #=cos2x/l+1 sin 27 /1, so that 6 is a primitive Ith root
of 1. Let R=Z[f]. Asisshownin [1], there are three and only three
classes of indecomposable A-modules, i.e.:

i) H-trivial modules, i.e., modules on which H acts trivially.

ii) Taking A to be o R-fractional ideal, we may turn A into o
A-module by defining

ha=@0a for ac A.
iii) Let y be an indeterminate and A be a R-fractional ideal. We

*)  We need not suppose that k¥ and K are absolute Galois number fields,
which is different from [2].



988 Y. MIvATA [Vol. 44,

can turn a direct sum Zy @ A of the Z-module 4 and the free Z-module
Zy into a 4-module by defining

hy=y+a, hao=0a for acA
where a, is a fixed element of A such that a, ¢ (0 —1)A.

We call 4-module M A-type if and only if M is isomorphic to A
defined in ii), and we call M (4, a,)-type if and only if M is isomorphic
to (A4, a,) defined in iii). Then it holds the following fundamental
theorem.

Theorem 3 ([1]1 (74.3)). Every A-module is isomorphic to a direct
sum

X @ Al @‘ M @ Ar @(Ar+1) a’r+1) @‘ i @(An, a’n)
where A, defined in i) and (A,, a,) defined in i), and where X is a
H-trivial module having a finite basis over Z. Moreover let M and N
be A-modules. M and N are isomorphic if and only if they satisfy the
following four conditions such that
1) The numbers r of A-type components of M and N are same.

1) The numbers n of H-non-trivial components of M and N are
same.

i) Two Z-ranks of X are same.

w) Two ideal classes of A=A, .-A, are same, where A,---A,
denotes the product of ideals A;.

n s R-rank of Mg, where Mg={me M|(1+h+---+h'"Y)m=0}, and
M=R, ® ---®R, DA, ---A,.

Now we shall begin the proof of Theorem 1. At first we state

Lemma 1. Let M and I, be a projective A-module and its A-sub-
module consisting of all elements m in M satisfying hm=m. Let S
=1+h+---+h'"t. Then

1,=8SM.

Proof. Let M and N be A-modules. Then I,goy=1,®Iy. There-
fore we can restrict our proof only to the case that M is 4, without
any loss of generality. In this case every element m in I, is written
in the form aS with a ¢ Z. Clearly I,=S4.

Let H be again the Galois group of K/k and © be the ring of al-
gebraic integers of K as before. © is a 4-module. Since H is a cyclic
group of order I, we can apply Theorem 3 and obtain

DEX(—BAI@’ °t @Ar@(ArH’ ar+1)@’ . @(Am an)'
Clearly I,=X and I sq...94,=0. As(4,, a,) is projective, from Lemma
1 follows that Iy .14,@0unan =28k Yrua® - D ZSk,y,. Thus
the proof is completed.

Lemma 2. Let O be as in Theorem 1, and we consider its de-
composition into a direct sum of indecomposable A-submodules. Then
the number of A-type modules appearing in its decomposition coincides
with the Z -rank of the H-trivial component.
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Proof. Since K=0®,0 has a normal basis, where Q is the ra-
tional number field, K is isomorphic to a direct sum of Q[H]. For
(4, ay)-type module M, it holds Q ®,M=Q[H]. For A-type module M,
0®,M is a non-trivial rational irreducible Q[H]-module. Then the
number of A-type modules in the direct decomposition of O is equal
to the Z-rank of H-trivial component.

Now we can easily obtain Theorem 2 as follows: As is known,
K /K is tamely ramified if and only 0=S,£O([2]). Then Theorem 2 is
clear from Theorem 1 and Lemma 2.
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