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In [1] we have introduced strange differential Hopf structures
arising from K-theory and have called them differential near Hopf
algebras. One of the purposes of this paper is to find a general theory
in order to make these strange differential Hopf algebras fit with the
usual differential Hopf algebras.

Our main result is a generalization of a criterion of coprimitivity
of Hopf algebras [5]. This enables us to use biprimitive form spectral
sequences due to Browder [3] in researches of K-theory of H-spaces.

The detailed proofs will be published elsewhere.

1. By a G,-module M =M, ®M, we mean a Z,-graded module over
a field K. M has a canonical involution ¢ such that

o|M,=1 and o¢|M,=-1.

All algebraic structures such as algebras, coalgebras, differential
algebras, etc., will be understood those over certain underlying G,
modules [1]. In the present work, all algebras (or coalgebras) are
equipped with augmentations and units (or counits), but are not neces-
sarily associative.

Let M and N be differential G,-modules. M®N is also a differen-
tial G,-module. The usual switching map

T:M ®N —N ®M
is an isomorphism of differential G,-modules. Pick 1¢ K. We define
the A-modified switching map

T,: MON—-NQM
by T,=A+A-do®d)T. T, is also an isomorphism of differential G,-
modules and involutive, i.e., T?=1.

Generalizing the above T,, we can define the A-modified permuta-
tions of tensor factors so that ©, acts as a group of automorphisms of
the differential G,-module M®*=MQ.. QM.

Our first basic idea is to replace the switching maps and permuta-
tions of tensor factors in the ordinary theory of Hopf algebras [5] by
A-modified ones and to construct a theory suitable to Hopf structures
derived from mod p K-theory.

2. Let A and B be differential algebras (or coalgebras). Putting
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0, =(p@e)(1RT,R1): AQBRARB—ARB
(or

¥, =1QT,R1)(V®) : AQB—-AKXBRAKB)
and defining the augmentation, unit (or counit) and differential as
usual, AQB becomes a differential algebra (or coalgebra), which has
a multiplication ¢, (or comultiplication ;) different from that of the
ordinary tensor product. We call this the 2-modified tensor product
of A and B and denote it by (A®B),. Thus (AQB),=AX®B is the ordi-
nary tensor product.

If a differential algebra (or coalgebra) A satisfies the relation

oT,=¢  (or Tpr=1),
then we call A is A-commutative.

3. Let A be an algebra (or coalgebra). We generalize Browder’s
filtration [1, 3] to non-associative cases and obtain a decreasing filtra-
tion {F*A, k=0} of the algebra A (or an increasing filtration
{G*A, k=0} of the coalgebra A). The associated graded G,-module is
denoted by

E(A)=3 4.0 E¥A, E*A=F*A|F*"'A,
for an algebra A, and by

F(A)=3 s JFE*A, JE*A=G*A|G* A,
for a coalgebra A. The usual basic properties of these filtrations
[1, 8] are retained.

If an algebra (or coalgebra) A satisfies the following condition

B.1) Nizo F¥*A={0} (or sz G*A=A)
we call A semi-connected. Remark that a graded connected algebra
(or coalgebra) is semi-connected.

If A is semi-connected and of finite dimension, then E (A)(or ,F(A))
is isomorphic to A as a G,-module.

Usually a decreasing filtration topologizes A. For an algebra A
we topologize A by an F-filtration. Then A is a Hausdorff space if it
is semi-connected.

(8.2) Let A be a semi-connected algebra (or coalgebra). Then
A={0} if and only if Q(A)={0} (or P(A)={0}).

Let f: A—B be a morphism of algebras. If f(A) is densein B
(topologized by the F-filtration) then we call f almost surjective.

(3.3) Let f: A—B be a morphism of algebras. f: A—B is almost
surjective if and only if Q(f): Q(A)—Q(B) is surjective.

As a dual to the above proposition we obtain

(8.8%) Let f: A—B be a morphism of coalgebras and assume A
to be semi-connected. f:A—B is injective if and only if P(f):
P(A)—P(B) is injective.

4. Let A be a (differential) algebra as well as a (differential)
coalgebra. If the unit and the augmentation of the algebra coincide
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with the augmentation and the counit of the coalgebra, then A is called
a (differential) quasi pre Hopf algebra. Furthermore, if it is associ-
ative as an algebra as well as a coalgebra, it is called a (differential)
pre Hopf algebra [1].

If A is a differential quasi pre Hopf algebra, then we can discuss
the F- and G-filtration of A. Both filtrations are d-stable [1] and
determine the spectral sequences

E.(A)=2 0 EA and E(A)=3,.,.E"A,
r=0, as usual. These are spectral sequences of algebras and
coalgebras, respectively.

If a differential (quasi) pre Hopf algebra A satisfies

4.1) Yvo=(p@p)AKT X1 (V&)
for some A ¢ K, then we call A a A-modified differential (quasi) Hopf
algebra, or simply a (quasi) (d, )-Hopf algebra. Thus, to say that A
is a quasi (d, 1)-Hopf algebra is equivalent to say that

‘1": A—*(A@A)z
is a morphism of differential algebras or that
¢0: (ARA),—A
is a morphism of differential coalgebras. Thus 4 and ¢ induces
morphisms
E.(¥): E,(A)—E,(ARA),)
and
() B(A®A))—,B(A)
of terms of spectral sequences for r=0. Since there hold Kiinneth
relations for A-modified tensor products in each term of both spectral
sequences, E.(y) (or ,E(¢p)) defines a comultiplication (or a multiplica-
tion) in E,(A) (or ,E(A)), and the latter becomes a graded connected
quasi (d, 2)-Hopf algebra for =0 and a graded connected quasi dif-
ferential Hopf algebra for »=>1.

(4.2) E,(A) is primitive and ,E(A) is coprimitive. (Ct., [3].)

5, Let A be a differential algebra (or coalgebra) and 1¢ K. Let
p=Char K and we suppose p+0. A A-modified cyclic permutation
C,: (A®?),—(A®?), is a morphism of differential algebras (or coalgebras).
Put 4,=1-C, and 3,=>2-/C: Define

0,A=Ker 3,/Im 4,
and

¥.A=Ker 4,/Im X,.
Then we have

(5.1) i) When A is a differential algebra, ¥,A is a differential
algebra. ii) When A is a differential coalgebra, @,A is a differential
coalgebra,.

Now let A be a (quasi) (d, 2)-Hopf algebra for 2 ¢ K. ¥,A and
@,A are differential algebra and coalgebra respectively. On the other
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hand we can prove that the canonical map ¥,4—®,A is an isomorphism.
Identifying them by this canonical isomorphism we get

5.2) 0,A=V,A is a (quasi) Hopf algebra.
We call @,A the derived (quasi) Hopf algebra of A.

6. Let A be a quasi (d, A)-Hopf algebra. Assume that p+0 and
the multiplication (or the comultiplication) of A is associative and 4-
commutative. We define a map

&;:Ker 2;—A (or n;: A—>Coker 2)
by &i=¢,.,t (or pi=my, ), where ¢, ,=¢(e®1): - -(¢®1Q- - - ®1):
(A4%7), - A, ¥, 1= RLI® -+ Q1) - - - (v RD: A—(A%?), i: Ker 3,
—(A%?), ig the inclusion and = : (A®?),—~Coker 2, is the projection.
Since ¢(or ) is .-commutative we have
©p-14,=0 (or 4,4, ,=0).
Passing to quotient (or restricting range) we have the induced map
§.:0,A—A (or y,: A-T,A).
Here we obtain

(6.1) The above map &,(or n) is a morphism of (d,A)-Hopf
algebras.

Now we can state our main theorems.

Theorem 1. Let A2¢ K and A be a quasi (d, A)-Hopf algebra which
is semi-connected as a coalgebra. If A is coprimitive then the multi-
plication is associative, 2-commutative and, when p+0, &,=zero map.

The proof is based on (3.3*). Dually we obtain

Theorem 2. Let 2¢ K and A be a quast (d, A)-Hopf algebra which
18 semi-connected as an algebra. If A is primitive then the comulti-
plication is associative, A-commutative and, when p+0 and ¥, A is
semi-connected as an algedbra, 7,=zero map.

7. As inverses to the above Theorems we obtain the following

Theorem 3. Let Ac K and A be a quast (d, A)-Hopf algebra which
is semi-connected as an algebra. Suppose that p is odd or that p=2
and Ad=0. If the multiplication is associative, A-commutative and
E,=zero map, then A is coprimitive.

Theorem 4. Let 2¢ K and A be o quasi (d, 2)-Hopf algebra which
18 semi-connected as o coalgebra. Suppose that p is odd or that p=2
and Ad=0. If the comultiplication is associative, A-commutative
and 7,=zero map, then A is primitive.

In case p=2 and Ad=0 these theorems are not proved. Never-
theless this is not an obstruction to our applications. In fact,

Theorem 5. The conclusions of Theorems 1 and 2 are hereditary
to H(A).

If A is graded and connected, then A, ¥4 and H(A) are semi-
connected as algebras as well as coalgebras. Thus

Theorem 6. Let p+0and A be a quasi (d, A)-Hopf algebra. Then
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E.(A) is primitive and ,E(A) is coprimitive for all r=0. If A 1is
primitive or coprimitive then ,E(A) or E,(A) is biprimitive for all r=0.

8. Let p=+0 and let A be a (d, A)-Hopf algebra of finite dimension.
If A is semi-connected as an algebra then E(F (A)) is a biprimitive
(d, A)-Hopf algebra which is isomorphic to A as a G,-module. Thus
it is a biprimitive form of A [3]. When A is semi-connected as a
coalgebra E,(,E(A)) is a biprimitive form of A. Thus, if A4 is semi-
connected either as an algebra or as a coalgebra, the assumption of
finite dimensionality allows us to discuss the ‘‘biprimitive form spectral
sequence” due to Brower [3].

Let X be a connected H-space which has the homotopy type of a
finite CW-complex. K*(X;Z,) [2] is an example of quasi (d, A)-Hopf
algebras. Since X is finite dimensional the usual filtration of
K*(X;Z,), defined by skeletons, is multiplicative and tends to zero.
This filtration is superior to our F-filtration, so K*(X; Z,) is semi-
connected as an algebra. The E,term is the d,-homology of E,
=K*(X; Z,), and its F-filtration is majorated by the induced filtration
which tends to zero. Thus the E,-term is semi-connected as an algebra.
Similarly, every term of the Bockstein spectral sequence is semi-con-
nected as an algebra. Thus we obtain

Theorem 7. Let X be a connected H-space which has the homo-
topy type of a finite CW-complex. We have a biprimitive form
spectral sequence which starts from a biprimitive form of K*(X;Z,)
and ends at that of (K*(X)/Torsions)®Z,.

This can be used to compute some K*(G).

Remark. K*(X;Z, is not necessarily semi-connected as a
coalgebra. An example is K*(SO(n); Z,).
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