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O. Introduction. Let (X, X, m) be a a-finite measure space and
S be a left amenable semigroup. By L and L we denote the usual
Banach spaces L(X,,m) and L(X,,m) respectively. Let T
={T ;s e S} be a representation of S by positive linear contractions
on L. For the sake of brevity such T is called a Markov representa-
tion of S on L. By co(T) we denote the convex hull of {T, s e S} and
by (T) the closure of co(T) with respect to the operator norm topology.
For this T we consider the following conditions"

(A) There exists a strictly positive function f in L such that Tf
f for all s e S.

(B) Every operator in (T) is conservative.
(C) T8 is conservative for every s e S.

Then it is obvious that the condition (A) implies (B) and (C). In this
paper we shall prove the next theorems.

Theorem 1. For any Markov representation T= {T8 s e S} of a

left amenable semigroup S on L, the conditions (A)and (B) are mutu-
ally equivalent.

Theorem 2. Let S be an extremely left amenable semigroup.
Then for any Markov representation T={T s e S} of S on L with the
following property"
( 1 ) T*(gh)--T*(g)T*(h) for any g, h e L and s e S,
the conditions (A) and (C) are mutually equivalent.

Theorem 1 is proved by Brunel [1] for the case when S is the ad-
ditive semigroup of positive integers, and by Horowitz [3] for the case
when S is commutative. In the author’s paper [4] we shall show that
the main theorem in [3] is also valid for the case of left amenable semi-
groups of Markov operators.

1. Proof of Theorem 1. Let S and T={T,;seS} be as in
Theorem 1. By L(T) we denote the closed linear subspace of L gen-
erated by {T* h--h s e S, h e L} and put L+(T)={h e L(T) h_>0}.
Then the next lemma is well-known (e.g., see Granirer [2, Theorem 5]).

Lemma 3. For any f e L the following equality holds"
( 2 ) inf {llf-hll, h e L(T)}=inf {11Q*fll Q e co(T)}.
Especially if S is extremely left amenable, then
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( 3 ) inf {llf--hll h e L(T)}--inf {I] T*f ]1 s e
Combining with Lemm 3 and Theorem 1(5) in Takahashi [5], we

have
Lemma 4. For any Martcov representation T={T s e S} of S on

L, the condition (A) holds if and only if L+(T)= {0}.
The next lemma is essential for us to prove Theorem 1.
Lemma . If h e L+(T), $hen $here exists a V e (T) such

lim V*hl[ =0.
Proof. Let {, ;n=l, 2,...} be a sequence of positive numbers

with 5,=1, and put ,==t, and =l--fl,. Moreover we
choose an increasing sequence {r} of positive integers satisfying
lim -=0. We can take a sequence {Q} in co(T) such that

( 4 ) Qh [[< for n= 1, 2, ...,
n

--1where h=h, h=h+= =0V. h for n>2,_ and V= f17 .= Q.
Indeed, since h, eL+(T) or all nl, we have in {I]Q*hll Q e co(T)}
=0 by (2). So the desired sequence {Q} can be taken inductively.
We now put V==Q and =;=+Q. Then V e (T),
V=flV+, and from (4) we have

( 5 ) ]]Vh]< or all nl and 0k.n+l
For any given >0 we can find a positive integer n such that fl-
<e/2 and (n+1)-</2. Putting N=r, by (5) we have

n+ 1
So I]V*hll< or all N. ence this V has our desired property.

q.e.d.
Using Lemma 5, we can prove the following lemma by the same

method as in Theorem 1 in [1].
Lemma 6. For any h e L+(T) $here exists a U e (T) such $ha$

U.heL
From Lemma 6 it ollows that if L+(T) contains a non-zero unc-

tion, then in (T) there exists at least one operator which is not con-
servative. Hence i the condition (B) holds, then L+(T) {0}. Owing
to Lemma 4, we can conclude that the condition (B) implies (A) or
any Markov representation o S on L. Thus Theorem 1 is proved
completely.

2. Proof of Theorem 2. Let S and T={T;seS} be as in
Theorem 2. Suppose now that L+(T) contains a non-zero unction.
Then there exists an A e , re(A)> 0 such that the indicator function

h=I o A belongs to L+(T). By (3) we can take an element s e S
satisyingIIThll<l. Since h h", wehave IIThll =lltThyll<lIT*h
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So IIT*hll-O. This means that T is not conservative. Hence recall-
ing Lemma 4, we conclude that the condition (C) implies (A) for any
Markov representation o S on L with (1). Thus Theorem 2 is proved
completely.
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