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§1. Introduction. Let each point x of a complex Banach space
B represent a state (x) of a physical or a mathematical system. Con-
sider a temporally homogeneous stochastic process by which the state
(x) is transferred to the state (y) after the elapse of a unit time. We
assume that this transition is realised by a linear mapping T in B:
y=T-2. Under their respective restrictions on 7' and on B, A. Markov,
B. Hostinsky, M. Fréchet, N. Kryloff-N. Bogoliouboff and other authors
investigated the asymptotic behaviour of the n-th iterate T™ of T for
large n. In the present note I intend to treat the problem by the
abstract integral equations due to F. Riesz” and the theory of resolvents
due to M. Nagumo.? The theorem below is a generalisation of Fréchet-
Kryloff-Bogoliouboff’s theorem.” The lemma 1 and the lemma 3 re-
spectively generalise the theorem of Riesz and that of Nagumo. 1
express my hearty thanks to S. Kakutani who kindly collaborated with
me in the discussion of the present note. In the next paper® the
mean ergodic theorem of J. von Neumann is extended to B, in a way
as to be applied to the problem of the homogeneous stochastic process.

§2. The theorem. A linear mapping T of a complex Banach
space B in B is called a (linear) operator in B. T is called continuous
if its morm (absolute value) | T = lu';ul%?' [T - x| is finite. A continuous

operator T is called completely continuous if it maps the unit sphere
lzl <1 of B on a compact point set in B.
Let T satisfy the following two conditions :
(1) there exists a completely continuous operator V such that
1 T—-Vi<1,
(2) there exists a constant a such that |T"|<a for n=1,2, ....
Then we obtain the

Theorem. The proper values of T with modulus 1 are isolated
proper values of finite multiplicities. Let these proper values be Ay, 25
...... , 4. Then there exist completely continuous operators Ty, T ......,
Ty, a continuous operator S and positive constants 8, ¢ such that

1) Acta Math. 41 (1918), 71-98.

2) Jap. J. of Math. 13 (1936), 75-80.

3) M. Fréchet: Quart. J. of Math. 5 (1934), 106-144. N. Kryloff and N. Bogo-
liouboff : C. R. Paris, 204 (1937), 1386-1388.

4) He also obtained another proof of our theorem, by virtue of the mean ergodic
theorem in B. See the following paper of Kakutani.

5) Proc. 14 (1938), 292.
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T=f§ AT+ S, TP=T, TT;=06;j), T:S=ST;=0
3 [ ,7=1,2,..., k),

1S* 1< B/ +e)" ®=12,...... ).
Corollary 1. There exist positive constants r; such that, if |A|=

{" (T/A)+(T[2?+---+(T[2)" _Tme <sin (=12.),

n
TeQ)=T; i¢f 2=2;, To(A)=0 if A2y, 2y, .-+, A

Corollary 2. (T[2)" converges (necessarily to Tw(1)) if and only if
there are no proper values of T with modulus 1 other than A.
Corollary 3. We replace the condition (1) by

5) {there exist positive integer m and a completely continuous
operator V such that |T™—V|<<1.

Then there exist positive constants 7, such that, if |1| =1,

n

T.() = (T//1)+(T//1;J_r-1--+(T//1)"'"l lim (T//l)"‘+(T//1)2;:+---+(T//1)“m .

k
Remarky Put T0=E’—Z T;, where E denotes the identical map-

ping of B. Then, by (8), T% To, ToT;=T;T,=0 (:>1). Hence, if B;
denotes the image of B by T,, we have the direct decomposition
B=By+B,++--+B;. Each point of B; is invariant by T;, as T:=T;.
B; (1>1) is of finite dimension by Riesz’s theorem since 7T%=T; and
T; (1>>1) is completely continuous. Let xe€ By, then T -x=TTy-x=S -z,
G T*-x=8S"x. Let xe®B; (¢t=>1), then T -x=TT;-x=2,T;-x=Az, --
T"-x=A%-x. Hence hm T"-2=0 uniformly for xe%, and T”

(xeB;,1>>1) moves m ‘B almost periodically with respect to n. B,
and B; (¢=>1) may respectively be called the dissipative part and the
ergodic part of B.

§3. Three lemmas for the proof of the theorem.

Lemma 12 Let T satisfy the condition (1). Then the proper
values of T do mot accumulate to the point mot imterior of the unit
circle in the complex plane.

Proof. Put T=V+4U, then [U|=06<<1. We have to derive a
contradiction from

6) T-mi=2;m, 5:€B, 2:%0, ;%4 (637, lim;=1, [2|=>1.

1) Cf. N. Kryloff and N. Bogoliouboff : Bult. Soc. Math. France, 64 (1936), 49-56.

2) If T is completely continuous this lemma reduces to the Satz 12 in Riesz, loc.
¢it. p. 90: the only accumulation point of the proper values of T is the point zero.
For, in this case, AT satisfies (1) for any A.
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We have T"=T"—(T—-V)"+(T-V)". T*—(T—V)" is completely
continuous with V, and |(T—V)*|<é", T* -x;=27-x;, Therefore it
suffices to derive a contradiction from (6) when 6<<(1/4). This may
be carried out as follows.

2y, Xz, .-+, X, are linearly independent for any %n. The proof is
obtained by induction with respect to n. Let x;, a3, ..., %.-1 be linearly
independent and let x, be linearly dependent with %3, .., Xp-1:

n-1 n—1
x,,=_21a,a;,-. Then we obtain Zlai(ln—li)xi=0 from T-x,=2,%,,

n-1
T -x,= _Zla,-T-a:i, contrary to the hypothesis of the induction.

Thus the linear space R,-; spanned by x, x, ..., X,—1 iS a proper
subspace of the linear space R, spanned by ), -..,%,. By Riesz’s
theorem there exists a sequence {v;} such that ;e R, lv:l =1 ly;—xl>
(1/2) for all xeR; ;. We have T'(y;/2)—T(y;/2)=y:— {y:— T (y:[2:)+
T[4}, vi—T(W:/2) e Ry as y;eR;. Hence

(M) 1V (sl2)— V(y;[a)1 +1 (sl 2) — (i a1 > (1/2)  for j<<i.
V being completely continuous and [¥;ll =1, l_iE =2, |1|>1, there

exists a partial sequence {7’} of {¢} such that lim || V(y,/2:)— V(y;/25)
=0. Thus, by (7), 6<<(1/4), |yl =1,lim ;=2 and |2|>1, we obtain
a contradiction.

Lemma 2. Let ® be a domain in the complex 2-plane. A family
V() of completely continuous operators in B be reqular in 1e€D. Let
I denotes the set of points (in D) at each point of which the equation

(E+ V(l))x; =0 admits non-trivial solution x,30. Then for each
1eD— E+ V(2) has a unique (continuous) inverse B+ K(2): (E'+ V(R))
(E+KW)=(E+KW)(E+V@)=E. K@) is regular in 1eD—3 and
s completely continuous for each 1e D—.

Proof. By Riesz’s theorem E+ V(1) has a unique (continuous)

inverse E+ K(2) for each 1e®—3. By K(1)=—V()—K(2) V(2), we see
that K(1) is completely continuous.

Let Joe D—, then the series| E+ g {E- (E+EW) (E+VW)}" ]

(E + K (20)) are absolutely and uniformly convergent for sufficiently small

|2—2y]. It is easy to see that this series are the demanded inverse
E+K(2).

Lemma 3 Let T satisfy the condition (1). By the lemma 1,
the proper values of T with modulus 1 are isolated proper values. Let
these proper values be Ay, Ag, -.., Ax. Then there exists a positive e such
that E+ AT admits a unique (continuous) inverse E+AR; for each 2,
1—2e<<|2|<<1+42¢, except for A=—127%, —23%, ..., —Az%. R, is regular
i A, 1—2e<<|2|<<1+2e, except for poles —21;* (1=1,2, ..., k).

Proof. As 4,2y, ..., A are isolated proper values of T, there exists

1) If T is completely continuous this lemma reduces to the Satz 12 in Nagumo,
loc. cit. p. 79: the resolvent R; of T defined by (E+AT) (E+AR)=(E+AR))(E+4T)
=F is meromorphic in |1| <co. For, in this case, AT satisfies (1) for any 4.
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a positive 7 such that (E+AT)x;=0 does not admit non-trivial solution
2,350 for any 1, 1—7<<|1| <147, except for 1= —A, — A%, ..., —AzL
Put T=v+U. By |Ul=6<1, E+2AU admits a unique (continu-
ous) inverse E+1U, =E+Z.‘1( —2AU)" which is regular in |1]<<(1/5).
Wehave (E+AU)(E+AT)=E+AV+2U,V. Put V(A)=1V+22U,V.

It is regular in 2<<(1/5) and is completely continuous with V' for each
A, 2<<(1/8).

Let 2¢e=Min. ((1/8)—-1, 77). We denote by ® the domain 1—2e<<
|2]<1+42, and let I be the point set (—A;%, —45%, ..., —2zY). Then
the equation (E'+ V(l))x;=0 does not admit non-trivial solution ;30
for any 1€ ®D—J. Assume that there exists a x;,%0, 2,9, which
satisfies (E-+ V(i))a;,=0. Then we would have (E+ AT )w;,=(E+2,U)
(E+ V(/lo))wxo=0. This shows that 1€ 5.

Thus, by the lemma 2, E+ V(1) admits a unique (continuous) in-
verse E+ K(2) for each ¢ ®—S, and K(2) is regular in 1e®—F. We
easily verify that E+21R,=(E+KQ))(E+1U)) is the inverse of E-+2T
for each 1¢®—-3.

Let the Laurent expansion of R,=(K()+AU,+iAK(R)U))/1 at
the isolated singular point A= —2; be

@®) 2 Q+5)Cu(3) -

N =—00

By Cauchy’s theorem C-l(j)=—2%J'R4dl. U, being regular at 1= —1;,

we have C_l(j)=%§{ (K0)+2KQU,)[A}dr. As KQ) is completely

continuous we see that C_;(5) is also completely continuous.
By substituting (8) in the resolvent equation R;,—R,=(1—#)R,R,
we obtain

9) C_.())Cu()=Cnu(5)C-n(5)=0 n>0,m=>0),
(10) CLi(572=C_i(3), C-n(3)=C_(5)C_1(5)=C_1(5)C_(9),
C_n+1)(9) = C%(3) n>0).

B is mapped on its linear subspace B; by C_y(j). By C%i(j)=C_(j)
all the points of B; is invariant by C_i(5). The unit sphere in B; is
compact since C_,(j) is completely continuous. Thus B; is of finite
dimension by Riesz’s theorem. By (10) C_.(j) maps B; in B; and
hence C_(n+1)(7) is of the form D?C_(j), where D; is a linear mapping
of B; in B;. Thus z_:l ().+A;’)'"C_,.(j)=§_%(l+1;‘)“”“’D;-‘C_1(j). As
it converges for |A+2;1|>0, the matrix D; must be nilpotent: D?=0
for large n.

Hence A= —21;! is a pole of R,

$4. The proof of the theorem. By (1) and the lemma 3, the
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(continuous) inverse E+AR; of E+AT is regular in 1—2e<<|A|<<1+2e
except for poles 2= —17, —23%, ..., 2", By (2) we see that, for |2]| <1,
R, is given by the absolutely and uniformly convergent series
S—T: | BN <a/(1—|2]). Hemee B, is regular in
|2]<<1+42e, except for simple poles A= —17%, —4z}, ..., —Az%. Let the
Laurent expansion of R; at 1=—2;! be

(a A+ 1) T4 S0+ T
Then, by (8), (9), (10) and Ry=—T we see that
k
Te=T, TT;=0 (ij), (T—ﬁl:z,-T,-)TF TT-34T)=0

6,3=1,2, .., ).
Put T =§1 2;T;4S. Then, by the above relations, we obtain for
Il <1 - _ .
Rl ___nz-lln—l( _ T)n =JSEI ,?;i( — lj)"ln_ln _|_"Z-lln-—l( — S)n

k o
=Zi(l +A,71)“T,-+Z‘il”“(—S)" .
7= n=
Therefore, by (11), we see that ﬁll”“’(—S)" is regular in |A]|<<1+42e.

o

Hence, by Cauchy’s theorem, [S™]|<<p/(1+¢)", B=Lub.

IAISI+~;L¢

(=a8)
1

n=

for n=1,2, ....

§5. Smoluchousky’s equation.? Let a family T(f) of continuous
operators in B satisfy the equation of Smoluchousky: 7T(t+s)=T(t)T(s)
0O<t,s<<w) We assume that T(f) 1is continuous in ¢:
k)rtn | T(t)— T(t)| =0, and that there exists a positive ¢, such that

T=1T(t,) satisfies (1) and (2).
By the theorem we have the representation (8). We put

T()=31T/0)+S(0), TAO=T/TOT; .

TAt) and S(f) is continuous in ¢t. Tj is commutative with every 7(t)
by (4), and hence we obtain, for 0<<t,s<<oo, Tyt+s)=TAt)Ts(s),
Ti(t)S(s)=S(s)T5(t)=0 and S(t+s)=S(£)S(s).

As S=S(t;) satisfies (4) we obtain, by positive a and b, [|S@HI<
a-exp(—bt) for ,<t<<oo,

By T%=T;, T{t)=T;T{(t)=T«t)T; and the complete continuity of
T; we see, as in the proof of the lemma 3, that T'(t)= M;(t)T;, where the
finite dimentional matrix M;(f) is continuous in ¢ and satisfies the
equation of Smoluchousky. As M,(f,)=the unit matrix we see that

1) An analogus result is obtained by Kakutani also, by applying the theorem to
the sequence {7'(t/2n)}.
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M;0)= Izg M(t)=the unit matrix. Hence,” if |Mi(t)—M;0)I<<1 for

t<ty, to>>0, we have Mj(t)=exp(Cjt/t;), where C;=log (M;(t)). Thus,
by M;(t,)=the unit matrix, we see that Mj{) is similar to the matrix
of the form

(ahall real=0 mod. 1) .

Therefore the theorem is extended to the continuous stochastic
process.

1) K. Yosida: Jap. J. of Math. 13 (1936), 25.



