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124. On the Zeros of the Riemann Zeta-function.

By Masatsugu TSUJIL
Mathematical Institute, Tokyo Imperial University.
(Comm. by T. YOSIE, M.LA., Dec. 12, 1942.)

Littlewood? proved that the Riemann zeta-function &(s) (s=o+1t)

has a zero in the domain: 0<<os<<oo, |t—T| <———-—1—6—————(Tg To).
log loglog T

Simple proofs are given by Hoheisel®, Titchmarsh® and Kramaschke®.
These authors use the Hadamard’s three circles theorem in the proof.
I will here give a still simpler proof, where I use the Doetsch’s three
lines theorem® in the modified form.

Theorem. &(s) has a zero in the domain: 0<<o << o,

[t-T|<—2 (Tg T(u)), where » 18 any positive number
logloglog T

greater than =

Especially we may take »=1.

First we will prove a lemma.

Lemma. Let f(z) be regular and bounded in |z|<<1 and K(r)
beacircle: |z—(1—7)|=r(0<<r<1) and M(r)=~1t'£a1§.”|f(z) | Then
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M) SM@E) ™ = M) ™ = (0<n<r<rn<l).

Proof. By s= 1£z , we map |2|<<1 on the half-plane R(s) > —;-,

then K(r) becomes a line ER(s)=?1r—, so that the lemma follows from

the Doetsch’s three lines theorem®.
Proof of the theorem.
Suppose that &(s) has no zero in the domain 4: 0<<os<< oo,
[t—T| <e=— 2 <u>1), then log ¢(s) is regular in 4. We
log log log T 4
map 4 on |z|<<1 by
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1 — ze—a(s-iT) 2 +e—a(s—iT)

&= ‘O(s) = 1+ ze—a(a-e'T) 2 e—a&s-—iT) ’ (1)
where a=—2750- =1 log log log T(/l =E’t; < 2).
Then s= co +¢T" corresponds to z=1 and
1—-2=3¢"%""(1+0(1)), @

where 0(1) >0 for T— oo, uniformly for R(s)=0 =¢>0. Hence the
segment: o=const. (=¢>0), [t—T|<c is mapped on a curve, which
lies between two circles:

lz—1]=3¢*(1+0(1)), [z—1]|=83¢*(1-0(1)). @)
If we put
a=p(l+e+iT), z2=;o(.;--—-e+iT), z3=¢(e+’iT)<o<e<~;—), @)
then by (2),
1-2=8(1+0(1), 1-m=3¢ " (1+o (),

1—2z=38¢"*(1+0(1)). (5)
Let two circles; C,: 22 =z, and C;: z———-?l— =—1— meet at &,
1—22 4 4

then we have easily

1—2 1—2 3
E—1|= 1 =L =S¢ (1 +0(1)). (6
=~ ~ 5’ (1+o@). ®

Let Ci=C{+C{’, where C; is the part of C;, which lies inside C, and
C{’ is the part of C;, which lies outside C,. Then by (6), C{’ is con-
tained in the circle :|z—1| < 8¢+ (1-—0(1)), so that by (8), the
image of C{’ in 4 lies on the right of the line R(s)=1+¢c Hence
|log &(s)| is bounded on Ci’. To evaluate |logl(s)| on Ci, we map

|2]<<1 on |z|<<1 by w=j:j_1é and put F(x)=log {(s), then | F(0)|
1

={log ¢(L+e+iT)| is bounded for T-—eo and R(F(z))=log |(s)]
Zlog T (T =Ty

Hence by Carathéodory’s theorem (Math. Ann. 73), we have in
|2|<<2, or in C, and hence on Ci,

|log £(8) | =| Fle) | < 12z (log T+2| F(0)|) < log T (T2 Ty,
%

so that on C,

1) Bieberbach: Lehrbuch der Funktionentheorie, II. S. 348.
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llog&(s) | <e*logT (T=T). (M
We put
K:: z-—-liz'ﬁ- =~1—;z~"~=r.- (i=1,2,3), M;=Max.|log¢(s)| on K,
then by (5),

rl=_g_e-a(1+e)(1 +o (1)) , r2=%e-a(’;'—=) (1 +o (1)) ’
rs=—g—e‘“‘(1+o (1)) .

Since K is contained in a circle: |z—1|=1-2,< 36"“(”'%)(1——0(1)),
we seg by (3), that its image in 4 lies on the right of the line R(s)=
1+—;— , 8o that M;=0(1) for T— o and since for T = T}, K; is con-

tained in C;, we have by (7), M;<e*logT.
Hence by the lemma,

1 1 1 1
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1 1 S —a(l+ze)
M<M™ mMy™ ™ =MPOMre 2 (o) <

1
const. log T' ¢?#lorlogloz T-(oglog - iG+%) (1+o )

Since 21<<2, we take ¢ so small that 1—1(—%—+2e)>0, then M,=

o(1)log T, so that
’C(—;—-—e+iT) =1°0, ®)
(S etir) | =100, ©)
From the functional equation of {(s), we have
lC(%—e+iT)l=!C(~—;;—+e+i )l-{x(—%+e+’iT)i, (10)

where ’x(%+e+i1’>| ~ const. T° for T — oo,

1) In fact, the image of K; in 4 lies on the right of the line R(s)=1+e. For,
since 4 is a convex domain, by Rad®’s theorem (Math. Ann. 102) any circle |z|=7(<1)
corresponds to a convex curve in 4 and since any circle in |2| <1 can be transformed
into a circle of the form |z|=7( <1), its image is also a convex curve. Kj, being the
limit of circles in |z| <1, is mapped on a convex curve in 4. Since the image of K,
passes through s=1+e¢+¢{7T and is symmetric to the line ¢=const.=T, it lies on the
right of the line R(s)=1+e.
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From (9), (10), we have ‘C’(%--—e-l-'iT)‘ > T¥ (T>Ty), which con-
tradicts (8). Hence &(s) has a zero in the domain: 0<<o<< oo,

[t—-T| < —2X (Tg T(u)), where » is any positive number
log loglog T

greater than —’i—



