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Let L be a vector space and D a directed system. If there exists
a real valued function I ] on the domain L D such that

(1) ]xl >0; if Ix
(2) lax I=l a i" Ix I for any real a,
(3) for any given eD there exists dD such that Ix 1 --" 0 and

Y I --’ 0 imply I+y ] --, 0,
(4) d <: e implies

then L is said to be a pseudo-normed linear space. It is proved by
D. H. Hyers [1] that the pseudo-normed linear space is a linear topo-
logical space, which was defined by A. Kolmogoroff [2] and J. v.
Neumann [3]. The triangular inequality

is stronger than (3). If we take therefore the condition (3’) instead
of (3) in addition of (1), (2), (4), then the space L is said to be a
locally convex linear topological space. In this paper we concern the
locally convex linear topological space L and its conjugate spaces L
and L.

1. Space E. The family of the sets u(d, )=--(x Ix 1 < ) ( ::> O)
is said to be a fundamental system of the origin ; we denote it by
{u(d, > 0).

Theorem 1. Referring the fundamental system {u(d, ); >0}, L
is a loeally convex linear topological space.

For a linear functional f(z) on the domain L, if there exist some
dD and M(d) > 0 such that

(1) f(x) M(g) Ix la for all xL,
then f(x) is said to be bounded.

Theorem 2. For linear functionals continuity is equivalent to
boundedness.

For the linear continuous functional f(x) the set of all d with
condition (1)is denoted by Dr, and for a given dD the set of all f(x)
with condition (1) is denoted by .

Theorem 3. D is a cofinal subsystem of D.
Proof. If d’ and d" are two elements of Dr, then If(x)] M(d’).

Ix I,, and If(x) M(d"). Ix I,, for all xL. Since D is a directed
system, there exists a d such that d’<:d and d"<:d. Consequently
If(x) M(d’). Ix ] and If(x) g M(d") Ix I for all xL. That is dDr.
For any d in D there exists d" such as d":> d and d":> d’, so that
f(x) <: M(d’) Ix ], M(d’) Ix ],,, which shows that Dr is a cofinal
subsystem of D.

Theorem 4. (i) lfl 0;and if ]f[,=O then f(x)O,
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(iii) for every elements f, g, there exists a dD such
that If/o lg f] g ],

(iv) or any f()eL, de implies [fg ]fl.
Prof. (i) and (ii) are evident by the condition (1), and the defini-

tion of [f]. Coneenring (iii) and (iv), we have f()[ Ills, l [d, and
]g()[g],,],,. If dd and d’d, then f()f],.
and g(x)[ ]g ],,. Ix ]. Consequently [fl, [fl,,, [g ]a,, [g [, and
then If(x) f. ]x g() [g ]" ] I. Above inequalities give
]x)+g(x)i[f()]WIg(x)[Ifa+[g]a]]x]a. That is [f+g]a
ifl+lg ], and d < e implies ]fla

C. 1. For any two linear continuous functionals fix) and g(x),
0D D Dy+.

Cor. 2. For fix)and g(x) in L, then ]f+g] [f[+[ g ld.
From this last coolary it is evident that L is a normed space

and we can easily show that La is complete. Hence La is a space of
type (B). Now we shall deno by L the family of all linear continuous
functions on L. We have easily L=L+Z,+.... Now let ilfl[ be the
g. 1. b. ]fld, then we have (i’)llfil 0, (ii’)llafl= a l[fl[, and (iii’)
dD

g l[fH+l[gl[. But it is not true in general that ilfll=O implies f=O.
In this space L we can prove analogue of theorem in (B)-space. Among
them we will state important ones without proof.

Theorem 5. For xoL and dD there is an foL such that [fi ]a= 1
and fo(x0)= Ix0

Theorem 6. If Eo is a linear subset of L and f(x)is a linear
continuous funconal on Eo, then there is an f(x)L such that f(x)=
fi(x) for all xEo and [fa=[fi.

Theorem 7. Suppose E0 is a linear subset of L, yoL-Eo and for
all deD g. 1. b. X-yo k 0, then there is an f(x)L such that f(Eo)= 0

Eo
f(yo) 1 and f=1/k.

Theorem 8. For an Eo L and functional fi(x) defined in Eo,
necessary and sufficient conditions that for any M0 and any dD
there exists an x)L such that f(x)=fo(x) for xEo and [f] M, is
that for any finite sequence {x, x2, ..., x,} of Eo and any real finite
sequence (H, H2,..., H}, we have

2. 0n the space L. We will now consider a new topolo in the
space L. A subset F of L is called to closed in L if for any dD
FL is closed in the space L. A linear functional X(f) on L is
called to continuous if it is continuous on the subspaces L; by the
same way we can define the boundedness of X(f).

Theorem 9. For a linear functional continuity is equivalent to
boundedness.

This theorem is evident. Since L, is a (B)-space, [X] is a norm

of X(f) in L. Consequentlly XIdI. u. b. Z(f)]/]fl,. By we
feLd

denote the family of all the linear continuous functionals on L. The
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bar operation for L is different from that for L.
Theorem 10. For any XoL and any dD there is an XoL such

that [Zo ]= Xo I.
Proof. Put Xo(f)=f(zo), then the functional Xo(f) is evidently

linear on L and moreover for every L, X0(f) = ]f(xo)
So that Xo is linear continuous on L, on the other hand by theorem
5, for any dD there is an fo(x) such that f0(Xo)= ix0 I and ]fo I= l.
Consequently Xo(fo) [fo(xo) = ix0 = fo I] and then

By this theorem we see that L (L. Since for any XoL and drD
we have Xo 1= IX0 ], therefore there occurs problem of regulality as
in (B)-spaee. Here we will not enter it, but we will show by an
example difficulties of this problem.

Example. Let L be a (B)-space and L be its conjugate. If we
define f> g by f(x)]>]g(z)] for all xcL, then L is a vector lattice
(this was proved in [7].). Consequently L is adirected system by this
ording. If we put Ix i=lf(x) for xL, then this pseudo-norm
satisfies all conditions (1), (2), (3’) and (4) in the introduction. Con-
sequently L is a locally convex linear topological space with respect to
such the norm Ix

Further if we define u(f,f, ..., f; ) by u(f,fi, ...,f; O)==-
(x x }<; i 1, 2, ..., k), then we can easily prove that this topology
implies also the original topology of L. In this example we denote
the former topology by /t) and latter by im), then in general the
topology I) is not stronger than /m’-), and i) is not stronger than
the norm topology of L. Thus the problem of regularity becomes the
problem of regularity with respect to weak convergence topology of L.
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