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Let L be a vector space and D a directed system. If there exists
a real valued function |x|; on the domain L x D such that

(1) |zle=0; if |2|z=0 for all d.D then x=6,

(2) |axle=|a|-|z|s for any real «,

(8) for any given eeD there exists deD such that |x|;— 0 and

|yla— 0 imply [x+y|.—0,

(4) d<<e implies |x|a Z |2 le
then L is said to be a pseudo-normed linear space. It is proved by
D. H. Hyers [1] that the pseudo-normed linear space is a linear topo-
logical space, which was defined by A. Kolmogoroff [2] and J. v.
Neumann [3]. The triangular inequality

(®) |etylaZ|xlat+]yla
is stronger than (8). If we take therefore the condition (3’) instead
of (8) in addition of (1), (2), (4), then the space L is said to be a
locally convex linear topological space. In this paper we concern the
locally convex linear topological space L and its conjugate spaces L
and L.

§1. Space L. The family of the sets w(d, 8)=(z; | x|« <) (6>0)
is said to be a fundamental system of the origin ; we denote it by
{u(d, 8); 6 > 0}.

Theorem 1. Referring the fundamental system {u(d,d); >0}, L
is a locally convex linear topological space.

For a linear functional f(x) on the domain L, if there exist some
deD and M(d) > 0 such that

1) [fl)| < M(d)-|x|s for all xeL,
then f(x) is said to be bounded.

Theorem 2. For linear functionals continuity is equivalent to
boundedness.

For the linear continuous functional f(x) the set of all d with
condition (1) is denoted by Dy, and for a given deD the set of all f(x)
with condition (1) is denoted by L.

Theorem 3. Dy is a cofinal subsystem of D.

Proof. If d’ and d” are two elements of Dy, then |f(x)| < M(d')-
|2|s, and |flx)] < M(d")-|x|sr for all xeL. Since D is a directed
system, there exists a d such that d'<d and d”<<d. Consequently
Ilf@) | M) |2z and |fx)| < M(d”) | |s for all xeL. That is deD,.
For any d in D there exists d” such as d” >d and d’ > d’, so that
| @) | S M(d) | 2] < M(d) ||z, which shows that D, is a cofinal
subsystem of D.

Theorem 4. (i) |fle=0; and if |f].=0 then f(x)=0,
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(i) |afla=|al||fla
(iii) for every elements f, g, there exists a deD such
that |f+9le < |flatgla
(iv) for any f(x)eLs, d<<e implies |fla = |fle
Proof. (i) and (ii) are evident by the condition (1), and the defini-
tion of |f|s. Concenring (iii) and (iv), we have |flx)| < |fls | 2 |o and
lg@) | < |gle l2lar. If & <d and d” <d, then |f@)| < |fla-lola
and | g(@)| < |glev-|®ls. Consequently |fle =|fle |9lar = |9l and
then |f(@)| Z|flaslzla; 19@) | Z|gle-]2ls. Above inequalities give
@) +g@) | < 1) [+ g@) | S [fla+lgladlxle That is |[f+gl.<
|fle+]9ls and d <e implies |fls = | fl..
Cor. 1. For any two linear continuous functionals flx) and g(x),
O#Df [} .Dg C Df+g.
Cor. 2. For flz) and g(@) in Lg, then |f+gla <|fla+]gla
From this last corrolary it is evident that L; is 2 normed space
and we can easily show that L; is complete. Hence L; is a space of
type (B). Now we shall denote by I the family of all linear continuous
functions on L. We have easily L=L;+Lg+---. Now let [ f|l be the
g 1 b. |£la, then we have (') Il =0, (ii") lafl=]|calfl, and (ii") |+

gl Z|1fl+lgl. But it is not true in general that |[f]|=0 implies f=4.
In this space L we can prove analogue of theorem in (B)-space. Among
them we will state important ones without proof.

Theorem 5. For xeL and deD there is an fieL such that | fyle=1
and fo(%o) =] 20 |a.

Theorem 6. If E, is a linear subset of L and f(x) is a linear
continuous functional on Ej then there is an f(x)eL such that f(x)=
Jo(w) for all xeE, and |fla=|/fla

Theorem 7. Suppose E, is a linear subset of L, yeL-E, and for
all deD g. lbb. | -4 |¢=Fk >0, then there is an f(x)cL such that f(Fp)=0

fy)=1 and |fla=1]k.

Theorem 8. For an E, <L and functional fi(x) defined in E,
necessary and sufficient conditions that for any M>0 and any deD
there exists an flw)eL such that f(x)=fy(x) for xeE, and |fla< M, is
that for any finite sequence {x;, &, ..., 2,} of Ej, and any real finite
sequence {H,, H,, -, H,}, we have

|ié_1Hi (@) | < M|§:h{.v, l.

2. On the space L. We will now consider a new topology in the
space L. A subset I" of L is called to be closed in L if for any deD
'L, is closed in the space Ls. A linear functional X(f) on L is
called to be continuous if it is continuous on the subspaces Lq; by the
same way we can define the boundedness of X(f).

Theorem 9. For a linear functional continuity is equivalent to
boundedness.

This theorem is evident. Since L, is a (B)-space, | X|; is a norm
of X(f) in Ly Consequentlly |X|s=L u.b. |X(f)|/|fle. By L we
SeLd

denote the family of all the linear continuous functionals on L. The
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bar operation for L is different from that for L. B

Theorem 10. For any xeL and any deD there is an XL such
that |0 le=]Xa

Proof. Put X(f)=f(x,), then the functional Xi(f) is evidently
linear on L and moreover for every L |Xo(f)|=|fao) | <|flal e
So that X; is linear continuous on L, on the other hand by theorem
5, for any deD there is an fy(x) such that fi(t)=|x s and |fola=1.
Consequently | Xu(fo) | =|fowo) |=| a0 la = | fola| a0 a, and then | Xola=| |a.

By this theorem we see that L, < L. Since for any aeL and deD
we have |uy|s=|X;|s, therefore there occurs problem of regulality as
in (B)-space. Here we will not enter it, but we will show by an
example difficulties of this problem.

Example. Let L be a (B)-space and L be its conjugate. If we
define f>g by |f(x)|>|g(x)| for all xzeL, then L is a vector lattice
(this was proved in [7].). Consequently L is adirected system by this
ording. If we put |x|,=|f(®)| for xeL, then this pseudo-norm |x |
satisfies all conditions (1), (2), (8’) and (4) in the introduction. Con-
sequently L is a locally convex linear topological space with respect to
such the norm |x|,.

Further if we define u(fi, f2 -y Jx; 8) bY U(f1, for ovvy Joo 3 O)=
(@; |x| 7 <63 ©=1,2, ..., k), then we can easily prove that this topology
implies also the original topology of L. In this example we denote
the former topology by T® and latter by T, then in general the
topology T® is not stronger than T®, and 7@ is not stronger than
the norm topology of L. Thus the problem of regularity becomes the
problem of regularity with respect to weak convergence topology of L.
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