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Abstract

A Hamiltonian cycle system of the complete graph minus a 1–factor K2v − I
(briefly, an HCS(2v)) is 2-pyramidal if it admits an automorphism group of
order 2v − 2 fixing two vertices. In spite of the fact that the very first exam-
ple of an HCS(2v) is very old and 2-pyramidal, a thorough investigation of
this class of HCSs is lacking. We give first evidence that there is a strong re-
lationship between 2-pyramidal HCS(2v) and 1-rotational Hamiltonian cycle
systems of the complete graph K2v−1. Then, as main result, we determine
the full automorphism group of every 2-pyramidal HCS(2v). This allows
us to obtain an exponential lower bound on the number of non-isomorphic
2-pyramidal HCS(2v).

1 Introduction

Speaking of a Hamiltonian cycle system of order v, or HCS(v) for short, we mean a
set of Hamiltonian cycles of Kv whose edges partition E(Kv) if v is odd or E(Kv)−
I, with I a 1-factor of Kv, if v is even. Two HCSs are isomorphic if there exists a
bijection (isomorphism) between their vertex–sets mapping one into the other.
An automorphism of a Hamiltonian cycle system H is an isomorphism of H with
itself. The automorphisms of H form the full automorphism group of H, denoted
by Aut(H). Speaking of an automorphism group of H one means a subgroup of
Aut(H).
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HCSs possessing a non-trivial automorphism group have attracted consider-
able attention (see [8] for a short recent survey on this topic). Detailed results can
be found in: [9, 15] for the cyclics; [10] for the dihedrals; [4] for the doubly transitives;
[7] for the regulars; [1, 6] for the symmetrics; [11] for those being both cyclic and
symmetric. Here, we only need to recall the basic facts on the 1-rotationals which
have been widely studied in [3, 13].

Throughout this paper every group will be denoted in multiplicative notation
and its identity will be denoted by 1, except when the group is the cyclic group
Zn. As usual, additive notation will be used in this case with identity 0.

An HCS(v) is 1-rotational under a group G (also called a round dance neighbour
design based on G in [3]) if it admits G as an automorphism group of order v − 1
fixing one vertex ∞. In this case the action of G on the other vertices is necessarily
sharply transitive. Thus it is natural to identify the vertex-set V with G ∪ {∞}
and to see the action of G on V as the multiplication on the left with the rule that
g∞ = ∞ for every g ∈ G.

In what follows, when speaking of the differences of two adjacent vertices g1

and g2, with g1, g2 ∈ G, we will mean g−1
1 g2 and g−1

2 g1.
We first note that a 1-rotational HCS of even order cannot exist.
There exists a 1-rotational HCS(2n + 1) under a group G of order 2n if and

only if G is symmetrically sequenceable (see [12, Proposition 3.9]). This means
that G is binary, namely it admits exactly one involution, and there exists a path
T = [g1, g2, . . . , g2n] (directed terrace) with vertex-set G satisfying the following
properties:

(i) g2n+1−i = λgi for 1 ≤ i ≤ 2n where λ is the only involution of G, i.e., we
have: T = [g1, g2, . . . , gn, λgn, . . . , λg2, λg1].

(ii) every g ∈ G \ {1, λ} can be written in exactly one way as a difference of two
adjacent vertices gi and gi+1 of the subpath T′ = [g1, g2, . . . , gn].

The 1-rotational HCSs under G are precisely the G-orbits of a cycle obtainable by
joining ∞ with the endpoints of a directed terrace of G.

Thus, if T = [g1, . . . , g2n] is a directed terrace of G, then the
1-rotational HCS generated by T is easily seen to be H(T) = {sC | s ∈ S} with
C = (∞, g1, . . . , g2n), sC = (∞, sg1, . . . , sg2n) and S an arbitrary complete sys-
tem of representatives for the cosets of the subgroup {1, λ} of G of order 2; for
instance one can take S = {g1, . . . , gn} in view of condition (i). Without loss of
generality we can always assume that g1 = 1, in which case T is said to be a basic
directed terrace and C is said to be the starter cycle of H(T).

We refer to [20] for a survey on sequenceable groups. Here we recall that every
binary solvable group except Q8 (the group of quaternions) has been proved to
be symmetrically sequenceable in [2].

We say that an HCS(v) is 2-pyramidal if it admits an automorphism group G
of order v − 2 fixing 2 vertices ∞ and ∞. First observe that such an HCS(v) has v
even apart from the trivial case of v = 3. In fact, for v odd, the edge connecting
the two vertices fixed by G should be covered by a cycle C of the HCS and then
we see that every g ∈ G would have to fix C pointwise. This is possible only in
the case that G is the trivial group.
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Reasoning as above one can also see that in every 2-pyramidal HCS of even
order, the edge [∞, ∞] is always in the removed 1-factor I.

It is not difficult to see that for any given 2-pyramidal HCS under G, the action
of G on the non-fixed vertices is sharply transitive. Hence the vertex-set V can be
identified with G ∪ {∞, ∞}, v = 2n + 2, |G| = 2n, and the action of G on V is
the multiplication on the left with the rule that g∞ = ∞ and g∞ = ∞ for every
g ∈ G.

Given g ∈ G, we will denote by τg the bijection on G defined by τg(x) = gx
for every x ∈ G. By abuse of notation, for ∞, ∞ 6∈ G, the bijections on G ∪ {∞}
or G ∪ {∞, ∞} acting as τg on G and fixing the infinities will be also denoted by
τg.

In what follows we will denote by Ĝ the group {τg | g ∈ G}. The action of Ĝ

on the vertex-set naturally extends to edges and cycles and thus Ĝ is an automor-
phism group of the HCS. Moreover each automorphism τg preserves differences
between adjacent vertices and the map g 7→ τg is an isomorphism between G and

Ĝ.
In the next section we will see that every 2-pyramidal HCS(2n+ 2) is generated

by a suitable 1-rotational HCS(2n + 1).
In the third section we will prove that the full automorphism group of a

2-pyramidal HCS(2n + 2) under G always is isomorphic with G itself for n ≥ 3.
As a consequence, there exists an HCS(2n + 2) with full automorphism group G
for any symmetrically sequenceable group G.

Finally, in the last section we show that for n ≥ 3, up to isomorphism, every
2-pyramidal HCS(2n + 2) is generated by exactly two 1-rotational
HCS(2n + 1) so that the number of non-isomorphic 2-pyramidal HCS(2n + 2) is
exactly half the number of non–isomorphic 1-rotational HCS(2n + 1). This fact,
using the enumerative results on 1-rotational HCS(2n + 1) obtained in [13], al-

lows us to claim that there are at least 2⌈3n/4⌉−1 pairwise non-isomorphic
2-pyramidal HCS(2n + 2) for every n ≥ 6.

2 On the structure of 2-pyramidal HCSs

The famous HCS(2n + 1) by Walecki (see [18]) is 1-rotational under Z2n. We
denote this W(2n + 1). It is well known that inserting in every cycle of it a new
vertex ∞ between the two vertices at distance n from ∞ one obtains a 2-pyramidal
HCS(2n + 2) under Z2n that will be denoted by W(2n + 1)+. (see Figure 1).

Indeed we are going to show that the 2-pyramidal HCSs are precisely those
obtainable in this way starting from any 1-rotational HCS.

From now on, if C is a (2n + 1)-cycle with a vertex denoted by ∞, then C+ will
denote the (2n + 2)-cycle obtainable from C by inserting a new vertex ∞ between
the two vertices of C at distance n from ∞. If H is any collection of (2n+ 1)-cycles
passing through ∞, then we set H+ = {C+ | C ∈ H}.
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Figure 1:

Proposition 2.1. If H is a 1-rotational HCS(2n+ 1) under G, then H+ is a 2-pyramidal
HCS(2n + 2) under G.

Conversely, every 2-pyramidal HCS(2n + 2) under G has the form H+ with H a
suitable 1-rotational HCS(2n + 1) under G.

Proof. Let H be a 1-rotational HCS(2n + 1) under G and let C = (∞, g1, . . . ,
g2n) be its starter cycle. Thus T = [g1, . . . , g2n] is a basic directed terrace of G and
we have H = {giC | 1 ≤ i ≤ n}, with giC = (∞, gig1, . . . , gign). For i = 1, 2, . . . , n,
the two vertices at distance n from ∞ in the cycle giC are the endpoints of the edge
[gign, gign+1]. All these edges form the cosets of {1, λ} in G by condition (i) on
directed terraces and hence they form, together with [∞, ∞], a 1-factor I of the
complete graph K2n+2 with vertex-set G ∪ {∞, ∞}. Thus, we easily see that H+

is a decomposition of K2n+2 − I, i.e., an HCS(2n + 2). We also see that the cycles

of H+ are those of the Ĝ-orbit of the cycle C+. Therefore H+ is 2-pyramidal under
G.

Now assume that H′ is a 2-pyramidal HCS(2n + 2) under G. Let I be the
1-factor not covered by the cycles of H′ and recall that [∞, ∞] is in I.

Let λ be any involution of G and suppose that there exists an edge e of a cycle
C of H′ which is a right coset of {1, λ} in G. Of course τλ switches the endpoints
of e and hence it acts on C as a reflection in the axis of e. This is absurd since
the reflection in the axis of an edge of an even-cycle has no fixed vertex while we
know that τλ fixes both ∞ and ∞. We conclude that no right coset of {1, λ} is
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edge of a cycle of H′. Therefore each of the n right cosets of {1, λ} is an edge of
I and hence, by the pigeon hole principle, I \ [∞, ∞] necessarily coincides with the
set of right cosets of {1, λ} in G. We also deduce that λ is the only involution of G
otherwise, with the same reasoning, we would have other edges not covered by
the cycles of H′. Thus G is binary and {1, λ} is normal in G.

Now take any cycle C of H′, let Stab(C) be its Ĝ-stabilizer, and let Orb(C) be

its Ĝ-orbit. Of course Orb(C) is entirely contained in H′ and hence its length is
at most equal to |H′|, which a trivial counting argument shows to be equal to n.
It follows that Stab(C) is not trivial. A non-identity element τg of Stab(C) fixes C
and also fixes the two vertices ∞ and ∞ so that [∞, ∞] is necessarily a diameter of
C and τg acts on C as a reflection in this diameter. We deduce, in particular, that g
is an involution and hence, recalling that G is binary, we have Stab(C) = {1, τλ}.

Thus Orb(C) has length |G|
2 = n, that is the size of H′. We conclude that H′

coincides with Orb(C).
From the above paragraph, the neighbors x and y of ∞ in C are switched by

τλ, i.e., we have y = λx. It follows that the pairs of neighbors of ∞ in the cycles
of H′ are the cosets of {1, λ} in G, i.e., the edges of I \ [∞, ∞]. We conclude that
removing ∞ from each cycle of H′ and joining its neighbors we get a set H of
(2n + 1)-cycles which is an HCS(2n + 1) with vertex-set G ∪ {∞}. It follows that
H is 1-rotational and that H′ = H+.

If H is a 1-rotational HCS(2n + 1) and C is its starter cycle, then C+ will be
naturally called the starter cycle of H+.

Remembering how H+ is obtained from H, it is evident from the above propo-
sition that [∞, ∞] is a diameter of every cycle of a 2-pyramidal HCS.

In view of the general result concerning 1-rotational HCSs mentioned above,
we can state the following result.

Corollary 2.2. There exists a 2-pyramidal HCS(2n + 2) under a group G of order 2n if
and only if G is symmetrically sequenceable.

3 The full automorphism group of a 2-pyramidal HCS

It is easy to see that, up to isomorphism, there is exactly one HCS(4) and exactly
one HCS(6), both pictured in Figure 2. They are 2-pyramidal under Z2 and Z4,
respectively and their full automorphism groups are both isomorphic to the dihe-
dral group of order 8. This is clear if we consider that the HCS(4) is just a 4-cycle,
whereas the full automorphism group of the HCS(6) is generated by the transla-
tion τ1 and by the reflection β in the axis a of the diameter [∞, ∞].

For n > 2 we prove that the full automorphism group of a 2-pyramidal
HCS(2n + 2) under G is just G.

In this case, differently from the HCS(4) and the HCS(6), the reflection β in the
axis of the diameter [∞, ∞] is not an automorphism of a 2-pyramidal HCS(2n+ 2)
with n > 2.



752 R. A. Bailey – M. Buratti – G. Rinaldi – T. Traetta

Figure 2:

Theorem 3.1. If n > 2, the full automorphism group of a 2-pyramidal HCS(2n + 2)
under G is isomorphic to G itself.

Proof. Let H be a 2-pyramidal HCS(2n + 2) under G and let C be its starter
cycle. Denote by A the full automorphism group of H.

We know that Ĝ := {τg | g ∈ G} is a subgroup of A isomorphic to G and that

Ĝ is transitive on H so that A is transitive on H as well. Thus, if Ĝ0 and A0 are
the stabilizers of C under Ĝ and A respectively, we have

|H| = |Ĝ : Ĝ0| = |A : A0| (3.1)

by the orbit-stabilizer theorem.
Since n > 2, the only edge of the removed 1-factor that is a diameter of every

cycle is [∞, ∞], hence A fixes {∞, ∞}. There are exactly four symmetries of C
which preserve {∞, ∞}; they are the identity, the reflection τλ in the diameter
[∞, ∞], the reflection α in the axis of [∞, ∞], and the rotation τλα through 180

degrees. Therefore either A0 = Ĝ0 = {τ1, τλ} or A0 = {τ1, τλ, α, τλα}. By (3.1),

we have A = Ĝ in the former case and |A : Ĝ| = 2 in the latter.

Suppose that A0 6= Ĝ0 so that α ∈ A0. Note that α swaps the infinities and

that α has order 2, so that α2(g) = g for every g ∈ G. For |A : Ĝ| = 2, we have

that Ĝ is normal in A. Thus, for every g ∈ G, there exists a suitable φ(g) ∈ G such
that ατgα−1 = τφ(g). Given g1, g2 in G, we can write:

τφ(g1g2)
= ατg1g2α−1 = ατg1

α−1ατg2 α−1 = τφ(g1)
τφ(g2)

= τφ(g1)φ(g2)
.

It follows that φ is a permutation on G such that φ(g1g2) = φ(g1)φ(g2) for every
pair of elements g1, g2 ∈ G, i.e., φ is an automorphism of G. Set α(1) = h so
that we have ατgα−1(h) = α(τg(1)) = α(g). By definition of φ(g), we also have

ατgα−1(h) = τφ(g)(h) = φ(g)h. Thus we have:

α(g) = φ(g)h ∀ g ∈ G. (3.2)
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In particular, we have
1 = α2(1) = α(h) = φ(h)h. (3.3)

Applying (3.2) twice and taking into account that φ is an automorphism of G, we
have

g = α2(g) = α(φ(g)h) = φ(φ(g)h)h = φ2(g)φ(h)h ∀ g ∈ G

and then, by (3.3), we have

g = φ2(g) ∀ g ∈ G. (3.4)

Now let ψ be the automorphism of H defined by ψ = τh−1α. In view of (3.2) we
have ψ(g) = τh−1 α(g) = h−1φ(g)h, for all g ∈ G. Thus we can write

ψ2(g) = ψ(h−1φ(g)h) = h−1φ(h−1φ(g)h)h

and then, recalling again that φ is an automorphism of G,

ψ2(g) = h−1φ(h−1)φ2(g)φ(h)h.

On the other hand we have φ(h) = h−1 by (3.3) and φ2(g) = g by (3.4) so that we
have

ψ2(g) = g ∀g ∈ G. (3.5)

Let Fix(ψ) and Fix(τλψ) be the sets of vertices which are fixed by ψ and τλψ,
respectively. If |Fix(ψ)| ≥ 3, then there is an edge [x, y] with endpoints in Fix(ψ)
not belonging to the removed 1-factor I and hence there is a cycle C(x, y) of H
containing [x, y]. For ψ(x) = x and ψ(y) = y, we have that ψ fixes C(x, y), i.e., ψ is
a symmetry of C(x, y). It follows that ψ is the identity since there is no non-trivial
symmetry of a cycle having three fixed vertices. On the other hand we see that ψ
swaps the infinities so that we have a contradiction. We conclude that Fix(ψ) has
size at most two. Similarly, one can prove that Fix(τλψ) has size at most two.

Thus the set Fix(ψ) ∪ Fix(τλψ) has size at most four and then, having |G| ≥
6, there is some g ∈ G such that ψ(g) 6= g and ψ(g) 6= λg. This means that
e := [g, ψ(g)] is an edge not belonging to I. Now note that e is fixed by ψ in
view of (3.5) and hence ψ also fixes the cycle of H containing e. On the other
hand, using (3.2), we see that ψ(1) = 1 contradicting the fact that a non-trivial
symmetry of a cycle of even length which fixes an edge has no fixed vertex.

The conclusion is that we have A0 = Ĝ0 and hence A = Ĝ which is the asser-
tion.

It is interesting to establish which groups, up to isomorphism, are the full
automorphism group of a combinatorial design of a given type. Although this
problem is often hard to solve in general, it has been settled when the design is,
for example, one of the following: a Steiner triple or quadruple system [19]; a
non-Hamiltonian 2-factorization of the complete graph [5]; an even cycle system
[14]; an odd cycle system [17]. For HCSs of even order we have the following
partial answer.

Corollary 3.2. If G is a symmetrically sequenceable group, then there exists an HCS of
even order whose full automorphism group is isomorphic to G.
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Proof. By Corollary 2.2 and Theorem 3.1, it is enough to prove the assertion
for groups G of order not greater than 4, namely only for G = Z2 and G =
Z4 considering that Z2 × Z2 is not symmetrically sequenceable. Consider the
following two HCS(10) with vertex-set Z10 and removed 1-factor I = {[i, i +
5] | 0 ≤ i ≤ 4}:

H = {(0, 1, 3, 9, 7, 5, 2, 4, 8, 6), (0, 2, 3, 6, 4, 5, 9, 1, 8, 7),

(0, 3, 4, 7, 6, 5, 1, 2, 9, 8), (0, 4, 1, 7, 3, 5, 8, 2, 6, 9)};

H′ = {(0, 1, 3, 7, 9, 5, 4, 2, 8, 6), (0, 2, 9, 1, 8, 5, 3, 6, 4, 7),

(0, 3, 4, 1, 2, 5, 7, 6, 9, 8), (0, 4, 8, 7, 1, 5, 6, 2, 3, 9)}.

One can check that the only non-trivial automorphism of H is the permutation
(16)(27)(38)(49) so that Aut(H) is isomorphic to Z2. Also, Aut(H′) is generated
by the permutation (1267)(3984) and hence it is isomorphic to Z4. The assertion
follows.

In particular, by the mentioned result by Anderson and Ihrig we can claim
that for any binary solvable group except Q8 there exists an HCS of even order
whose full automorphism group is G.

4 Enumeration of 2-pyramidal HCSs

Let H = {C1, . . . , Cn} be a 1-rotational HCS(2n + 1) under G and consider the
set of Hamiltonian cycles H∗ = {C∗

1 , . . . , C∗
n} where, for 1 ≤ i ≤ n, the cycle C∗

i
is obtained from Ci by simply moving ∞ between the two vertices at distance n
from it. We note that H∗ is again a 1-rotational HCS(2n+ 1) under G; we call it the
twin of H. As an example, Figure 3 shows W(7), that is the Walecki 1-rotational
HCS(7), and its twin W(7)∗.

Using the above terminology, a result on 3-perfect HCS(2n + 1) recently, and
independently, obtained in [13] and [16] can be stated as follows.

Theorem 4.1. For n ≥ 3, the twin of the Waleki HCS(2n + 1) is 3-perfect.

For convenience of the reader, we recall that an HCS(2n + 1) is said to be i-
perfect with 1 ≤ i ≤ n if for every pair of vertices x and y there is exactly one
cycle of the HCS in which x and y are at distance i.

The Walecki HCS(2n + 1) is not 3-perfect and hence, by Theorem 4.1, it is not
isomorphic to its twin. We are going to show that this result holds in general.

Lemma 4.2. If H is a 1-rotational HCS(2n + 1) with n ≥ 3, then H and its twin H∗

are not isomorphic.

Proof. Assume that H is isomorphic to its twin H∗. In this case, reasoning as
in [13, Theorem 4.3], there is an isomorphism α between H and H∗ sending ∞ into
∞. Consider the permutation β on G ∪ {∞, ∞} switching the two infinities and
acting as α on G. Given C = (∞, g1, . . . , g2n) ∈ H, we have
C∗
+ = (∞, g1, . . . , gn, ∞, gn+1, . . . , g2n) ∈ H∗

+ and thus we see that β(C∗
+) = α(C)+ .
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Figure 3:

Thus, considering that α(C) ∈ H∗, every cycle C∗
+ ∈ H∗

+ is turned by β into a cy-
cle still belonging to H∗

+, i.e., β is an automorphism of H∗
+. This is a contradiction

since, by Theorem 3.1, any automorphism of a 2-pyramidal HCS(2n + 2) with
n ≥ 3 fixes both the infinities.

Theorem 4.3. For n ≥ 3, the number of non-isomorphic 1-rotational HCS(2n + 1) is
twice the number of non-isomorphic 2-pyramidal HCS(2n + 2).

Proof. For a given Hamiltonian cycle system H, let us denote by [H] its iso-
morphism class. Then denote by H1rot(2n + 1) the set of all isomorphism classes
of 1-rotational HCS(2n + 1) under any group and by H2pyr(2n + 2) the set of all
isomorphism classes of 2-pyramidal HCS(2n + 2) under any group. The map

f : [H] ∈ H1rot(2n + 1) 7→ [H+] ∈ H2pyr(2n + 2)

is clearly well defined and it is surjective by Proposition 2.1.
Also note that we have f ([H]) = f ([H∗]) for every [H] ∈ H1rot(2n + 1). In

fact, if H is a 1-rotational HCS(2n + 1) under G, then the transposition (∞ ∞) is
an isomorphism between H+ and H∗

+.
Assume that H and H′ are 1-rotational HCS(2n + 1) (under G and G′,

respectively) such that [H+] = [H′
+] so that there exists an isomorphism

α : G ∪ {∞, ∞} → G′ ∪ {∞, ∞} between H+ and H′
+. In both H+ and H′

+,
[∞, ∞] is the only removed edge which is a diameter of every cycle, so α must fix
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the 2-set {∞, ∞} and hence we can define the map β : G ∪ {∞} → G′ ∪ {∞} by
setting β(∞) = ∞ and β(g) = α(g) for every g ∈ G.

Take a cycle C = (∞, g1, . . . , gn, gn+1, . . . , g2n) ∈ H and distinguish two cases
according to whether α fixes {∞, ∞} pointwise or not.

1st case: α fixes {∞, ∞} pointwise. We have:

α(C+) = (∞, α(g1), . . . , α(gn), ∞, α(gn+1), . . . , α(g2n)) = β(C)+

and hence, considering that α(C+) ∈ H′
+, we have β(C) ∈ H′. Thus β turns every

cycle C of H into a cycle of H′, i.e., β is an isomorphism between H and H′.

2nd case: α swaps ∞ and ∞. Here we have:

α(C+) = (∞, α(g1), . . . , α(gn), ∞, α(gn+1), . . . , α(g2n)) = β(C∗)+

and hence, considering that α(C+) ∈ H′
+, we have β(C∗) ∈ H′. Thus β turns

every cycle C∗ of H∗ into a cycle of H′, i.e., β is an isomorphism between H∗ and
H′.

Thus the equality [H+] = [H′
+] implies that [H′] is either [H] or [H∗] which

are distinct isomorphism classes by Lemma 4.2. We conclude that the pre-image
under f of any isomorphism class a of 2-pyramidal HCS(2n + 2) always has size
two and hence the size of H1rot(2n + 1) is twice the size of H2pyr(2n + 1), that is
the assertion.

In [13] the last three authors determined a formula enumerating all 1-rotational
HCS(2n + 1) up to isomorphism. Even though our formula heavily depends on
some hardly computable parameters, it allowed us to claim that for any n ≥ 6

there are at least 2⌈3n/4⌉ non-isomorphic 1-rotational HCS(2n + 1). Hence, by
Theorem 4.3, we can state the following result.

Theorem 4.4. If n ≥ 6, then there exists at least 2⌈3n/4⌉−1 non-isomorphic 2-pyramidal
HCS(2n + 2).
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