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Abstract

In this paper, we consider the radially symmetric solutions for p-Laplacian
with nonlocal boundary condition in a perforated-like domain. We obtain the
existence, the uniqueness and some other properties of the radially symmet-
ric solution. The nonexistence of solution is also studied.

1 Introduction

Let Ω be a bounded open set of R
n, n ≥ 2, 0 ∈ Ω. We consider the radially sym-

metric solutions of the following p-Laplace equation in a perforated-like domain

−div
(

|∇u|p−2∇u
)

= h(x) f (x, u, |∇u|) , x ∈ Ω\{0}, (1.1)

subject to the nonlocal boundary condition

∫

∂Ω

|x|n−1

∣

∣

∣

∣

∂u

∂ν

∣

∣

∣

∣

p−2 ∂u

∂ν
ds =

∫

Ω

|x|n−1|∇u|p−2∇u · ∇g dx, (1.2)

and
lim
x→0

u(x) = α, (1.3)
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where Ω\{0} can be considered as the limit of Ω\Bε, Bε is a ball centered at the
origin with radius ε small enough, p > 2, α ≥ 0, f , g and h are given functions
and ν denotes the unit outward normal to the boundary ∂Ω. In order to discuss
the radially symmetric solutions, we assume that Ω is the unit ball B, h(x), g(x)
and f (x, u, |∇u|) are radially symmetric, namely,

h(x) = h(|x|), g(x) = g(|x|), f (x, u, |∇u|) = f (|x|, u, |∇u|).

Let r = |x|, then by a direct calculation, we can rewrite the problem (1.1)–(1.3) as
(

rn−1φp(u
′)
)′

+ rn−1h(r) f (r, u, |u′ |) = 0, r ∈ (0, 1), (1.4)

φp

(

u′(1)
)

=
∫ 1

0
sn−1φp

(

u′(s)
)

dg(s), (1.5)

lim
r→0+

u(r) = α, (1.6)

where φp(s) = |s|p−2s. Let q = p/(p − 1), then we have φ−1
p (s) = φq(s) for any

s ∈ R.
Nonlocal boundary value problem often occurs in the study of the electro-

chemistry, the thermal conduction problem, the semiconductor problem, etc., see
[1]–[3]. This class of problems were first considered by Bitsadze [4] in the early
1960s. From then on, more and more workers take their notice of these problems,
such as Il’in and Moiseev [5], Karakostas and Tsamatos [6]–[8], etc. Until now,
the problems with nonlocal boundary value condition, as well as with the multi-
point boundary value condition, also attract many authors to pay attention to,
see [9]–[15], and the references cited therein. To the best of our knowledge, most
works we mentioned above are focus on the discussion of the existence of the so-
lutions, however, the works of studying the uniqueness of positive solutions for
p-Laplacian are rather few in the literature.

In this paper, we study the existence, the uniqueness and some other proper-
ties of the radially symmetric solutions of the nonlocal boundary value problem
(1.1)–(1.3), in which we extend the function f (u) in [13] to the more general case
f (x, u, |∇u|). Since f is dependent on the first-order partial derivatives of u(x),
we have to find the variational relationship between u(r) and u′(r) under differ-
ent conditions. And a fixed point result, called the nonlinear alternative of Leray-
Schauder, which can be found in [16], would be used to obtain the existence of
solutions.

The paper is organized as follows. In Section 2, we introduce some necessary
preliminaries and give the statement of our main results. The proofs of the main
results will be given in Section 3.

2 Preliminary and Statement of the Main Result

We firstly present the assumptions.

(H1) f (r, s, t) is a continuous and positive function defined on [0, 1] × R × R,
which is strictly decreasing with respect to s for each fixed (r, t) ∈ [0, 1] ×
[0,+∞) and t for each fixed (r, s) ∈ [0, 1]× [0,+∞), respectively;
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(H2) h(r) is a positive and continuous function on [0, 1];

(H3) g(r) is a nondecreasing function on [0, 1] with 0 = g(0) < g(1) < 1.

Now we introduce the definition of the solution.

Definition 2.1. A function u(r) is said to be a solution of the equation (1.4),

if u(r) ∈ C([0, 1]) ∩ C1((0, 1]), u(r) ≥ 0 on [0, 1], and the integral equality

∫ 1

0

(

rn−1φp(u
′)ϕ′(r)− rn−1h(r) f (r, u, |u′ |)ϕ(r)

)

dr = 0

holds for any ϕ ∈ C∞

0 ((0, 1)).

Remark 2.1. Let u(r) be a solution of the equation (1.4), then u satisfies the equation
(1.4) in (0, 1).

Proof. According to Definition 2.1, we have

(

rn−1φp(u
′)
)′

= −rn−1h(r) f (r, u, |u′ |)

in (0, 1) in the sense of distribution. Furthermore, by virtue of the assumptions
(H1) and (H2), we obtain

(

rn−1φp(u
′)
)′

∈ C((0, 1)),

hence,
rn−1φp

(

u′
)

∈ C1((0, 1)),

which implies that u satisfies the equation (1.4) in (0, 1). The proof is complete.

Next, we can derive the following properties of the solution u for the nonlocal
boundary value problem (1.4)–(1.6), by using the assumptions above.

Proposition 2.1. Let u(r) be a solution of the nonlocal boundary value problem (1.4)–
(1.6). Then

(i) u′(r) > 0, r ∈ (0, 1];

(ii) u(r) ∈ C2((0, 1));

(iii) u′′(r) < 0, r ∈ (0, 1];

(iv) 0 < lim
r→0+

rn−1φp

(

u′(r)
)

< +∞.

Proof. (i) From the equation (1.4), we can see that

(

rn−1φp(u
′)
)′

= −rn−1h(r) f (r, u, |u′ |) < 0, r ∈ (0, 1),

which implies that

rn−1φp

(

u′(r)
)

> φp

(

u′(1)
)

, r ∈ (0, 1).
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If u′(1) = 0, from the above inequality, we have

0 = φp

(

u′(1)
)

=
∫ 1

0
sn−1φp

(

u′(s)
)

dg(s) > 0,

which is a contradiction. If u′(1) < 0, however, we see that

∫ 1

0
sn−1φp

(

u′(s)
)

dg(s) ≥ φp

(

u′(1)
)

∫ 1

0
dg(s) = φp

(

u′(1)
)

g(1) > φp

(

u′(1)
)

,

which contradicts the nonlocal boundary value condition (1.5). Thus u′(1) > 0
and φp

(

u′(r)
)

> 0, r ∈ (0, 1), that is,

u′(r) > 0, r ∈ (0, 1].

(ii) Recalling Remark 2.1, we have

rn−1φp(u
′) ∈ C1((0, 1)).

Since u′(r) > 0, r ∈ (0, 1], it follows

rn−1φp(u
′) = rn−1(u′)p−1 ∈ C1((0, 1)).

Note that n ≥ 2 and p > 2, we have

u(r) ∈ C2((0, 1)).

(iii) The equation (1.4) implies that for any r ∈ (0, 1],

u′′(r) = −

(

(n − 1)u′(r)

(p − 1)r
+

h(r) f (r, u, u′)

(p − 1)(u′)p−2

)

< 0.

(iv) Integrating the equation (1.4) from r to 1, it yields

rn−1φp

(

u′(r)
)

= φp

(

u′(1)
)

+
∫ 1

r
sn−1h(s) f (s, u, u′)ds

≤ φp

(

u′(1)
)

+
∫ 1

0
sn−1h(s) f (s, 0, 0)ds

< +∞,

uniformly in r ∈ (0, 1). Since

rn−1φp

(

u′(r)
)

> φp

(

u′(1)
)

> 0,

lim
r→0+

rn−1φp

(

u′(r)
)

is existent and

0 < φp

(

u′(1)
)

≤ lim
r→0+

rn−1φp

(

u′(r)
)

< +∞.

Summing up, we complete the proof of Proposition 2.1.
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Define a normed linear space X, which is the set of all real-valued functions

defined in C([0, 1]) ∩ C1((0, 1]) with the norm

||u||
△
= max

{

sup
0≤r≤1

|u(r)|, sup
0<r≤1

|ru′(r)|

}

.

We can prove that X is a Banach space. Obviously, Proposition 2.1 indicates that
for any solution u of the nonlocal boundary value problem (1.4)–(1.6), u ∈ X.

The main results in this paper are the following two theorems.

Theorem 2.1. Assume p > n and (H1)–(H3) hold. For any α ≥ 0, the nonlocal
boundary value problem (1.4)–(1.6) has a unique solution uα(r) ∈ X. Furthermore, if
0 ≤ α1 < α2, then y(r) = |uα1

(r)− uα2 (r)| has no local maximum value point in (0, 1).

Theorem 2.2. Assume p ≤ n and (H1)–(H3) hold. For any α ≥ 0, the nonlocal
boundary value problem (1.4)–(1.6) has no solution.

According to Theorem 2.1, we have y(r) < max{y(0), y(1)}. Therefore,

Remark 2.2. If p > n and uα1
(r), uα2(r) are two solutions of the problem (1.4)–(1.6)

with uα1
(0) = α1, uα2(0) = α2, and α1 6= α2. Then we have

|uα1
(r)− uα2(r)| < max

{

|α1 − α2|, |uα1
(1)− uα2(1)|

}

, r ∈ (0, 1).

3 Proofs of the Main Results

In this section, we give the proofs of the main results. In order to study the
existence and uniqueness of solution of the nonlocal boundary value problem
(1.4)–(1.6), we should first consider the following approximate problem, where
we assume (H1)–(H3) hold true, and α ≥ 0, β > 0,















(

rn−1φp(u′)
)′
+ rn−1h(r) f (r, u, |u′ |) = 0, r ∈ (0, 1),

u(0) = α,

u′(1) = β.

(3.1)

By applying some similar methods of the proof of Proposition 2.1, we can also
obtain the following properties of the solutions for the boundary value problem
(3.1).

Remark 3.1. Assume u(r) is a solution of the problem (3.1), then

(i) u′(r) > 0, r ∈ (0, 1];

(ii) u(r) ∈ C2((0, 1));

(iii) u′′(r) < 0, r ∈ (0, 1];

(iv) 0 < lim
r→0+

rn−1φp

(

u′(r)
)

< ∞.
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In what follows, we shall show that the problem (3.1) admits one and only

one solution in C([0, 1]) ∩ C1((0, 1]). We need the following lemmas.

Lemma 3.1. Assume u1(r) and u2(r) are two solutions of the problem (3.1). If there
exist a point b ∈ (0, 1], such that u1(b) = u2(b), then for any r ∈ [0, b], we have

u1(r) = u2(r), r ∈ [0, b].

Proof. We give the proof by contradiction. Without loss of generality, sup-
pose that there exist a point r0 ∈ (0, b) such that u1(r0) < u2(r0). Note that
u1(0) = u2(0) and u1(b) = u2(b), we might as well take

b1 = inf
{

r; 0 ≤ r < r0, u1(s) < u2(s), s ∈ (r, r0)
}

and
b2 = sup

{

r; r0 < r ≤ b, u1(s) < u2(s), s ∈ (r0, r)
}

.

Then for any r ∈ (b1, b2), we have u1(r) < u2(r) and u1(b1) = u2(b1), u1(b2) =
u2(b2). Obviously, u1(r) − u2(r) must have a minimal value point c ∈ (b1, b2),
such that u′

1(c) = u′
2(c), u′′

1 (c) > u′′
2 (c). A simple calculation for the first equation

of the problem (3.1) shows that the solution u of the problem (3.1) satisfies

(n − 1)rn−2(u′)p−1 + (p − 1)rn−1(u′)p−2u′′ + rn−1h(r) f (r, u, u′) = 0.

Therefore, for the two solutions u1(r) and u2(r), we have

(n− 1)cn−2(u′
1)

p−1(c)+ (p− 1)cn−1(u′
1)

p−2(c)u′′
1 (c)+ cn−1h(c) f (c, u1(c), u′

1(c))

= (n− 1)cn−2(u′
2)

p−1(c)+ (p− 1)cn−1(u′
2)

p−2(c)u′′
2 (c)+ cn−1h(c) f (c, u2(c), u′

2(c)).

By virtue of (H1) and (H2), we see that f (c, u1(c), u′
1(c)) > f (c, u2(c), u′

2(c)) and
h(c) > 0, hence we conclude that u′′

1 (c) < u′′
2 (c), which is a contradiction. The

proof is complete.

Lemma 3.2. Assume u1(r) and u2(r) are two solutions of the problem (3.1) with bound-
ary value conditions

u1(0) = α1 ≥ 0, u′
1(1) = β1 > 0;

u2(0) = α2 ≥ 0, u′
2(1) = β2 > 0,

respectively. If there exists a point b ∈ (0, 1) such that u1(b) < u2(b), u′
1(b) < u′

2(b),
then for any r ∈ (b, 1], we have u1(r) < u2(r) and u′

1(r) < u′
2(r).

Proof. Suppose to the contrary, that is, there exists a point r0 ∈ (b, 1] such
that u′

1(r0) ≥ u′
2(r0), then we take

r∗ = inf
{

r; b < r ≤ r0, u′
1(s) ≥ u′

2(s), s ∈ (b, r]
}

.

Obviously, r∗ is exist, hence we have

u1(r) < u2(r), r ∈ [b, r∗],

u′
1(r) < u′

2(r), r ∈ [b, r∗),



A p-Laplace equation with nonlocal boundary condition 901

and
u′

1(r
∗) = u′

2(r
∗).

Then on the point r∗, by utilizing a similar method of the proof of Lemma 3.1,
we obtain u′′

1 (r
∗) < u′′

2 (r
∗), which implies that r∗ is not a stationary point of

u′
1(r)− u′

2(r). Clearly, it is a contradiction since u′
1(r

∗) = u′
2(r

∗). Thus we have

u′
1(r) < u′

2(r), r ∈ [b, 1].

Since u1(b) < u2(b), we further have

u1(r) < u2(r), r ∈ [b, 1].

The proof is complete.

Lemma 3.3. For any fixed α ≥ 0 and β > 0, the problem (3.1) admits at most one
solution.

Proof. We give the proof by contradiction. Without loss of generality, assume
that u1(r) and u2(r) are two solutions of the problem (3.1), and there exists one
point b ∈ (0, 1], such that u1(b) < u2(b). By a simple analysis, we see that there
must exist another point r0 ∈ (0, b] such that u1(r0) < u2(r0) and u′

1(r0) < u′
2(r0).

Recalling Lemma 3.2, we can conclude that

u1(r) < u2(r) and u′
1(r) < u′

2(r), for any r ∈ [r0, 1).

Then from (H1) we have

0 > u′
1(r0)− u′

2(r0)

= φq

[

1

rn−1
0

(

∫ 1

r0

rn−1h(r) f
(

r, u1(r), u′
1(r)

)

dr + βp−1

)

]

− φq

[

1

rn−1
0

(

∫ 1

r0

rn−1h(r) f
(

r, u2(r), u′
2(r)

)

dr + βp−1

)

]

> 0.

The contradiction implies that the lemma is proved.

We use the following fixed point theorem, which can be found in [16], to ob-
tain the solution of the problem (3.1).

Lemma 3.4. Assume U is a relatively open subset of a convex set K in a Banach space
X. Let G : Ū → K be a compact map, p ∈ U, and Nλ(u) = N(u, λ) : Ū × [0, 1] → K
a family of compact maps (i.e., N(Ū × [0, 1]) is contained in a compact subset of K and
N : Ū × [0, 1] → K is continuous) with N1 = G and N0 = p, the constant map to p.
Then either

(i) G has a fixed point in Ū; or

(ii) There is a point u ∈ ∂U and λ ∈ (0, 1) such that u = Nλu.
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Lemma 3.5. If p > n, then for any fixed α ≥ 0 and β > 0, the problem (3.1) has a

solution u(r) ∈ C([0, 1]) ∩ C1((0, 1]).

Proof. We first consider the following problem for any fixed parameter λ ∈
(0, 1),















(

rn−1φp(u
′)
)′
+ λrn−1h(r) f (r, u, |u′ |) = 0, r ∈ (0, 1),

u(0) = α,

u′(1) = β.

(3.2)

Obviously, since Remark 3.1 also holds for the problem (3.2), we can see that
u ∈ X for any solution u of the problem (3.2). Therefore, solving the problem
(3.2) is equivalent to finding a nonnegative solution u(r) ∈ X with u(r) satisfying

u(r) = α +
∫ r

0
φq

[

1

sn−1

(

λ
∫ 1

s
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)]

ds. (3.3)

Since p > n, it follows that

u′(r) = φq

[

1

rn−1

(

λ
∫ 1

r
sn−1h(s) f

(

s, u, |u′|
)

ds + βp−1

)]

is integrable on (0, 1), then the right side of (3.3) is reasonable in [0, 1]. Define the
operator Nλ : K → K by

(Nλu)(r) = α +
∫ r

0
φq

[

1

sn−1

(

λ
∫ 1

s
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)]

ds, (3.4)

where K = {u ∈ X; u(0) = α, u′(1) = β}.
In what follows, we will show that the operator N1 has a fixed point in X. The

proof will be given in several steps.
Step 1: We shall show that there is a constant M∗, independent of λ, such that

||u|| ≤ M∗ for any solution u(r) of the problem (3.2) for each λ ∈ (0, 1).
Let u(r) be a solution of the problem (3.2). According to the equation (3.3), we

have

|u(r)| ≤ α +
∫ r

0
φq

[

1

sn−1

(

∫ 1

s
tn−1h(t) f (r, 0, 0)dt + βp−1

)]

ds

≤ α +
∫ 1

0
φq

[

1

sn−1

(

∫ 1

0
tn−1h(t) f (r, 0, 0)dt + βp−1

)]

ds

≤ α + φq(M1)
∫ 1

0
s−(n−1)/(p−1) ds,

|ru′(r)| = rφq

[

1

rn−1

(

λ
∫ 1

r
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)]

≤ rφq

[

1

rn−1

(

∫ 1

0
tn−1h(t) f (r, 0, 0)dt + βp−1

)]

≤ rφq

(

M1

rn−1

)

,
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where

M1 >

∫ 1

0
rn−1h(r) f (r, 0, 0)dr + βp−1

is a constant. Thus there is a constant M∗, independent of λ, such that ||u|| ≤ M∗

for any solution u(r) of the problem (3.2) for each λ ∈ (0, 1).
Step 2: It is easy to see that Nλ is continuous for any fixed λ. We will show

that Nλ is even completely continuous for fixed λ by Arzela-Ascoli theorem.
Let Ω be a bounded subset of K, i.e., ||u|| ≤ C for all u ∈ Ω. Here C > 0 is a

constant. Firstly, following the proof in Step 1, we can see that NλΩ is closed and
bounded, and there exist the following two inequalities

|(Nλu)(r)| ≤ α +
∫ 1

0
φq

(

1

sn−1
M2

)

ds (3.5)

and
|r(Nλu)′(r)| ≤ φq(M2), (3.6)

where

M2 = sup
{

| f (r, u, 0)|; 0 ≤ r ≤ 1, −C ≤ u ≤ C
}

∫ 1

0
tn−1h(t)dt + βp−1.

We next show the equicontinuity of NλΩ on [0, 1]. For u ∈ Ω and r1, r2 ∈ [0, 1],
we have

|(Nλu)(r1)− (Nλu)(r2)| (3.7)

≤

∣

∣

∣

∣

∫ r2

r1

φq

[

1

sn−1

(

λ
∫ 1

s
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)]

ds

∣

∣

∣

∣

≤ φq(M2)

∣

∣

∣

∣

∫ r2

r1

s−(n−1)/(p−1) ds

∣

∣

∣

∣

,

lim
r→0+

r(Nλu)′(r) (3.8)

= lim
r→0+

rφq

[

1

rn−1

(

λ
∫ 1

r
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)]

= lim
r→0+

r(p−n)/(p−1)φq

(

λ
∫ 1

0
tn−1h(t) f

(

t, u, |u′|
)

dt + βp−1

)

= 0.

The equicontinuity of NλΩ on [0, 1] now follows from the inequality (3.7) and
the equation (3.8). Therefore, the Arzela-Ascoli theorem implies that Nλ is com-
pletely continuous.

Step 3: We shall show that N(Ū × [0, 1]) is contained in a compact subset of
K, where

U = {u ∈ K; ||u|| ≤ M∗ + 1},

(N0u)(r) = α + β
∫ r

0
φq

(

1

sn−1

)

ds.
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Let N(un, λn) be any sequence in N(Ū × [0, 1]). Then it is easy to see that
N(un, λn) is uniformly bounded and equicontinuous on [0, 1] since the inequality
(3.5)–(3.7) and the equation (3.8) does not depend on the fixed λ, thus the Arzela-
Ascoli theorem again yields the result. By Lemma 3.4, we deduce that N1 has a

fixed point, i.e., the problem (3.1) has a solution u(r) ∈ C([0, 1]) ∩ C1((0, 1]).
Summing up, we complete the proof of Lemma 3.5.

Lemma 3.3 and Lemma 3.5 implies that the problem (3.1) has an unique solu-
tion. According to this, in what follows, by using the shooting method, precisely
speaking, by selecting β > 0 suitably in the problem (3.1) such that the nonlocal
boundary value condition (1.5) holds, we will show that the problem (1.4)–(1.6)
admits a unique solution. Before going further, we need the following lemmas.

Lemma 3.6. If u1(r), u2(r) are two solutions of the problem (3.1) with u′
1(1) = β1,

u′
2(1) = β2, and β1 > β2 > 0, then

u1(r) ≥ u2(r), r ∈ (0, 1].

Proof. If the lemma were not true, there must exist one point r0 ∈ (0, 1) such
that u1(r0) < u2(r0). Since u1(0) = u2(0), it is easy to see that there exists another
point r1 ∈ (0, r0), such that u1(r1) < u2(r1), u′

1(r1) < u′
2(r1) by considering the

continuity of the solution. According to Lemma 3.2, we conclude that u′
1(1) <

u′
2(1), namely, β1 < β2, which is a contradiction. The proof is complete.

Lemma 3.7. If u1(r), u2(r) are two solutions of the problem (3.1) with u′
1(1) = β1,

u′
2(1) = β2, and β1 > β2 > 0, then

u′
1(r) ≥ u′

2(r), r ∈ (0, 1).

Proof. If the lemma were not true, there exists a point r0 ∈ (0, 1) such that
u′

1(r0) < u′
2(r0). According to Lemma 3.6, we see that u1(r0) ≥ u2(r0). We

will show that u1(r0) > u2(r0). Otherwise, we have u1(r0) = u2(r0). Since
that u′

1(r0) < u′
2(r0) and u1(0) = u2(0), therefore, there must exist one point

b ∈ (0, r0) such that u1(b) > u2(b) and u′
1(b) > u′

2(b) by considering the conti-
nuity of the solution. According to Lemma 3.2, we have u1(r0) > u2(r0) which
is a contradiction. Since u1(0) = u2(0), u2(r)− u1(r) must have a minimal value
point c ∈ (0, r0), hence we have u1(c) > u2(c), u′

1(c) = u′
2(c). By utilizing a sim-

ilar method in Lemma 3.1, we see that u′′
1 (c) > u′′

2 (c), clearly, which contradicts
the fact that c is a minimal value point of u2(r) − u1(r). Therefore the proof is
complete.

Combining Lemma 3.6 and Lemma 3.7, we obtain the following conclusion.

Corollary 3.1. Let u1(r), u2(r) be two solutions of the problem (3.1) with u′
1(1) =

β1, u′
2(1) = β2, and β1 > β2 > 0. Then there exists a point b ∈ [0, 1) such that

u1(r) = u2(r), 0 ≤ r ≤ b, (3.9)

u1(r) > u2(r), b < r ≤ 1, (3.10)

u′
1(r) > u′

2(r), b < r ≤ 1. (3.11)
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Proof. Let
b = sup

{

r; 0 ≤ r < 1, u1(r) = u2(r)
}

.

By virtue of u1(0) = u2(0) and Lemma 3.1, we have 0 ≤ b < 1. Furthermore,
together with Lemma 3.6, we also have

u1(r) = u2(r), 0 ≤ r ≤ b,

u1(r) > u2(r), b < r ≤ 1.

So, it suffices to consider the inequality (3.11). If it were not true, then according
to Lemma 3.7, there exists a point r0 ∈ (b, 1) such that u′

1(r0) = u′
2(r0). By uti-

lizing a similar method to the proof of Lemma 3.1, we see that u′′
1 (r0) > u′′

2 (r0),
which implies that the point r0 is a minimal value point of u2(r)− u1(r). Hence,
there must exist a point r1 ∈ (b, r0) such that u′

1(r1) < u′
2(r1), which contradicts

Lemma 3.7. The proof is complete.

Combining with the above lemmas, we are now in a position to get the exis-
tence and uniqueness of solution of the problem (1.4)–(1.6) by the shooting meth-
ods. Define

k(β) = φp

(

u′
β(1)

)

−
∫ 1

0
sn−1φp

(

u′
β(s)

)

dg(s), β > 0,

where uβ is the solution of the problem (3.1) with boundary value condition
u′

β(1) = β. Then the desired unique solution of the problem (1.4)–(1.6) will be

obtained by selecting an unique constant β∗
> 0, such that k(β∗) = 0. First of all,

we need to establish the strict monotonicity and continuity of the function k(β)
with respect to β.

Lemma 3.8. k(β) is continuous and strictly monotonous with respect to β > 0.

Proof. Let β1 > β2 > 0. According to Corollary 3.1 and the first equation of
the problem (3.1), we derive

0 ≤ φp(u
′
β1
)− φp(u

′
β2
)

=
1

rn−1

[(

∫ 1

r
sn−1h(s) f

(

s, uβ1
, u′

β1

)

ds + β
p−1
1

)

−

(

∫ 1

r
sn−1h(s) f

(

s, uβ2
, u′

β2

)

ds + β
p−1
2

)]

=
1

rn−1

[(

∫ 1

r
sn−1h(s)

(

f
(

s, uβ1
, u′

β1

)

− f
(

s, uβ1
, u′

β1

)

)

ds

+ (β
p−1
1 − β

p−1
2 )

)]

,

where uβ1
and uβ2

are the solutions of the problem (3.1) with u′
β1
(1) = β1, u′

β2
(1) =

β2. By the assumption (H1), it is easy to see that

f
(

s, uβ1
, u′

β1

)

− f
(

s, uβ2
, u′

β2

)

≤ 0.
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Thus

0 ≤ φp(u
′
β1
)− φp(u

′
β2
) ≤

1

rn−1
(β

p−1
1 − β

p−1
2 ),

namely,

0 ≤ rn−1
(

φp(u
′
β1
)− φp(u

′
β2
)
)

≤ β
p−1
1 − β

p−1
2 .

By the above inequality, we obtain

k(β1)− k(β2)

= (β
p−1
1 − β

p−1
2 )−

∫ 1

0
sn−1

(

φp(u
′
β1
(s))− φp(u

′
β2
(s))

)

dg(s)

≥ (β
p−1
1 − β

p−1
2 )−

∫ 1

0
(β

p−1
1 − β

p−1
2 )dg(s)

= (β
p−1
1 − β

p−1
2 )(1 − g(1))

> 0.

Furthermore, we can see the continuity of k(β) when β > 0 from the following
inequality

|k(β1)− k(β2)|

=

∣

∣

∣

∣

(β
p−1
1 − β

p−1
2 )−

∫ 1

0
sn−1

(

φp(u
′
β1
(s))− φp(u

′
β2
(s))

)

dg(s)

∣

∣

∣

∣

≤
∣

∣

∣
β

p−1
1 − β

p−1
2

∣

∣

∣
+

∫ 1

0

∣

∣

∣
β

p−1
1 − β

p−1
2

∣

∣

∣
dg(s)

≤
∣

∣

∣
β

p−1
1 − β

p−1
2

∣

∣

∣
(1 + g(1)).

Hence, the proof of Lemma 3.8 is complete.

Now, by virtue of the above established lemmas about the approximate prob-
lem (3.1), we are going to prove the main results in this paper.

Proof of Theorem 2.1. A simple calculation for the first equation of the prob-
lem (3.1) implies that

∫ 1

0
sn−1φp(u

′
β)dg(s) =

∫ 1

0

(

βp−1 +
∫ 1

s
tn−1h(t) f (t, uβ , u′

β)dt

)

dg(s).

Noticing the assumption (H1)-(H3) and Fubini’s Theorem, we see that, when
β > 1,

k(β) = (1 − g(1))βp−1 −
∫ 1

0

∫ 1

s
tn−1h(t) f (t, uβ , u′

β)dt dg(s)

≥ (1 − g(1))βp−1 − g(1)
∫ 1

0
rn−1h(r) f (r, 0, 0)dr. (3.12)

On the other hand, when β ≤ 1, let δ be a positive constant, which is small
enough, and g(δ) > 0. From the proof of Lemma 3.5, we know that if u is a solu-
tion of the problem (3.1), then there exists a constant M∗

> 0 such that ||u|| ≤ M∗,
that is,

u(r) ≤ M∗ and u′(r) ≤ M∗/δ, r ∈ [δ, 1].
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Applying the strict monotonicity of f and the positivity of f and h, we have

k(β) = (1 − g(1))βp−1 −
∫ 1

0

∫ 1

s
tn−1h(t) f (t, uβ , u′

β)dt dg(s)

≤ (1 − g(1))βp−1 −
∫ 1

δ

∫ 1

s
tn−1h(t) f (t, uβ , u′

β)dt dg(s)

≤ (1 − g(1))βp−1 − g(δ)
∫ 1

δ
rn−1h(r) f (r, M∗ , M∗/δ)dr. (3.13)

Combining the inequality (3.12) with the inequality (3.13), it follows

lim
β→0+

k(β) < 0, lim
β→+∞

k(β) = +∞.

Then recalling the strict monotonicity and continuity of k(β), there is one and
only one β∗

> 0, such that k(β∗) = 0, and uβ∗ is the unique positive solution of
nonlocal boundary value problem (1.4)–(1.6).

Finally, we consider the property of the solution of the problem (1.4)–(1.6).
Suppose that there exists a point r0 ∈ (0, 1) such that y(r0) is the local maximum
value of y(r). Without loss of generality, we assume that uα1

(r0) > uα2(r0), then
we see that u′′

α1
(r0) < u′′

α2
(r0). Following the proof of Lemma 3.1, however, we

can obtain u′′
α1
(r0) > u′′

α2
(r0), which is a contradiction.

Summing up, we complete the Proof of Theorem 2.1.

Proof of Theorem 2.2. Suppose that the nonlocal boundary value problem

(1.4)–(1.6) admits a solution u ∈ C([0, 1]) ∩ C1((0, 1]). Then by a simple calcula-
tion to the equation (1.4), we see that u′(r) satisfies

u′(r) = r−(n−1)/(p−1)φq

(

∫ 1

r
sn−1h(s) f (s, u, u′)ds + φp(u

′(1))

)

, r ∈ (0, 1].

Obviously, u′(r) is not integrable since p ≤ n, which contradicts the definition of
u. Hence, we complete the proof of Theorem 2.2.

Acknowledgement The authors would like to express their deep thanks to
the referees for their valuable suggestions for the revision of the manuscript.The
authors also would like to thank Professor Jingxue Yin and Professor Chunpeng
Wang, under whose guidance this paper was completed.

References

[1] N. I. Ionkin, Solution of a boundary value problem in heat conduction theory
with nonlocal boundary conditions, Differential Equations, 13(1977), 294–304.

[2] Y. S. Choi, K. Y. Chan, A parabolic equation with nonlocal boundary condi-
tions arising from electrochemistry, Nonlinear Anal., 18(4)(1992), 317–331.

[3] Z. Cui, Z. Yang, Roles of weight functions to a nonlinear porous medium
equation with nonlocal source and nonlocal boundary condition, J. Math.
Anal. Appl., 342(1)(2008), 559–570.



908 H. Ye –Y. Ke

[4] A. V. Bitsadze, On the theory of nonlocal boundary value problems, Soviet
Math. Dokl. 30(1964), 8–10.

[5] V. Il’in, E. Moiseev, Nonlocal boundary value problems of the second kind
for a Sturm-Liouville operator, Differential Equations, 23(1987), 979–987.

[6] G. L. Karakostas, P. C. Tsamatos, Multiple positive solutions for a nonlocal
boundary value problem with response function quiet at zero, Electronic J.
Differential Equations, 2001(13)(2001), 1–10.

[7] G. L. Karakostas, P. C. Tsamatos, Sufficient conditions for the existence of
nonnegative solutions of a nonlocal boundary value problem, Appl. Math.
Lett., 15(13)(2002), 401–407.

[8] G. L. Karakostas, P. C. Tsamatos, Multiple positive solutions of some Fred-
holm integral equations arisen from nonlocal boundary-value problems,
Electron. J. Differential Equations, 30(2002), 1–17.

[9] A. Boucherif, Second-order boundary value problems with integral bound-
ary conditions, Nonlinear Anal., 70(2008), 364–371.

[10] M. Feng, D. Ji, W. Ge, Positive solutions for a class of boundary-value prob-
lem with integral boundary conditions in Banach spaces, J. Comput. Appl.
Math., 222(2008), 351–363.

[11] H. Pang, W. Ge, M. Tian, Solvability of nonlocal boundary value problems
for ordinary differential equation of higher order with a p-Laplacian, Comput.
Math. Appl., 56(2008), 127–142.

[12] J. R. L. Webb, G. Infante, Positive solutions of nonlocal boundary value prob-
lems involving integral conditions, Nonlinear differ. equ. appl., 15(2008), 45–67.

[13] J. Yin, Y. Ke, C. Wang, Radially symmetric solutions of the p-Laplacian in
perforated-like domain with nonlocal boundary condition, Nonlinear Anal.,
60(2005), 1183–1196.

[14] G. Infante, M. Zima, Positive solutions of multi-point boundary value prob-
lems at resonance, Nonlinear Anal., 69(2008), 2458–2465.

[15] J. R. Graef, J. R. L. Webb, Third order boundary value problems with nonlo-
cal boundary conditions, Nonlinear Anal., 71(2009), 1542–1551.

[16] A. Granas, J. Dugundji, Fixed Point Theory, New York: Springer-Verlag,
2003.

School of Mathematical Sciences, South China Normal University,
Guangzhou 510631, P.R. China

School of Information, Renmin University of China,
Beijing 100872, P.R. China
Email: ke yy@163.com.


