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Abstract

The extinction phenomenon of solutions for the the initial-boundary value
problem of the p-Laplacian parabolic equation

ut = div(|∇u|p−2∇u) + λ|u|m−1u − βu

is studied. Sufficient conditions about the extinction and decay estimates of
solutions are obtained by using Lp-integral model estimate methods and two
crucial lemmas on differential inequality. Non-extinction results are obtained
by super and sub-solution method.

1 Introduction

This paper is devoted to the extinction and decay estimates for the p-Laplacian
parabolic equation







ut = div(|∇u|p−2∇u) + λ|u|m−1u − βu, (x, t) ∈ Ω × (0, ∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, ∞),
u(x, 0) = u0, x ∈ Ω

(1.1)

∗Project Supported by the National Natural Science Foundation of China(No.11171092)
and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China
(No.08KJB110005);

Received by the editors in July 2012 - In revised form in January 2013.
Communicated by P. Godin.
2010 Mathematics Subject Classification : 35J25, 35J65.
Key words and phrases : Extinction; Decay estimates; p-Laplacian parabolic equation; Nonlin-

ear source.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 881–894



882 Z. Cui – Z. Yang

where Ω ∈ RN , N ≥ 2 is an open bounded domain with smooth boundary,

1 < p < 2, m > 0, λ > 0, β ≥ 0 and u0 ∈ L∞(Ω)
⋂

W
1,p
0 (Ω) is a nonzero

nonnegative function.

This type of equations arises in biological and astrophysical context. In com-
bustion theory, for instance, the term div(|∇u|p−2∇u) represents the thermal dif-
fusion, the function u(x, t) represents the temperature. Equations of the above
form are mathematical models also occurring in studies of generalized reaction-
diffusion theory [1], non-Newtonian fluid theory [2,3], non-Newtonian filtration
theory [4,5] and the turbulent flow of a gas in porous medium [6]. In the non-
Newtonian fluid theory, p is a characteristic quantity of the medium. Media with
p > 2 are called dilatant fluids and those with p < 2 are called pseudoplastics.
If p = 2, they are Newtonian fluids. When p 6= 2, the problem becomes more
complicated since certain nice properties inherent to the case p = 2 seem to be
lose or at least difficult to verify. The main differences between p = 2 and p 6= 2
can be found in [7,8].

In the present paper, our interest is in investigating the extinction of the non-
negative solution u of (1.1), i.e. there exists a finite time T > 0 such that the
solution is nontrivial for 0 < t < T, but u(x, t) ≡ 0 for all (x, t) ∈ Ω × [T,+∞).
In this case, T is called the extinction time.

The phenomenon of extinction is an important property of solutions for many
evolutionary equations which have been studied extensively by many researchers.
The first result on extinction was due to Kalashnikov in 1974 (see [9]). Especially,
there are also some papers concerning the extinction for the porous medium
equation. For instance, in [10-12], the authors studied the extinction and large-
time behavior of solution and in [13], the authors obtained conditions for the
extinction of solutions of without absorption by using super and sub-solution
methods and an eigenfunction argument. In [22-24], the authors discussed the
extinction behavior and decay estimates of the solutions for a class of reaction-
diffusion equations. But as far as we know, few works are concerned with the
decay estimates of solutions for the p-Laplacian parabolic equation.

In [14], Gu gave a simple statement of the necessary and sufficient conditions
of extinction of the solution to the following problem:







ut = div(|∇u|p−2∇u)− λuq, (x, t) ∈ Ω × (0, ∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),
u(x, 0) = u0(x), x ∈ Ω,

(1.2)

with λ > 0. He proved that if p ∈ (1, 2) or q ∈ (0, 1) the solutions of the problem
vanish in finite time, but if p ≥ 2 and q ≥ 1, there is non-extinction. In the
absence of absorption (i.e. λ = 0), Dibenedetto [15] proved that the necessary
and sufficient conditions for the extinction to occur is p ∈ (1, 2).

In [16], the authors investigated the following p-Laplacian parabolic equation
with nonlinear source:







ut = div(|∇u|p−2∇u) + λuq, (x, t) ∈ Ω × (0, ∞),
u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T),
u(x, 0) = u0(x), x ∈ Ω,

(1.3)
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where Ω ∈ RN , N ≥ 2 is an open bounded domain with smooth boundary,
1 < p < 2, and λ, q > 0 and u0 is a nonzero nonnegative function. They showed
that q = p− 1 is the critical exponent of extinction for the weak solution. Further-
more, for 1 < p < 2 and q = p − 1 they proved the extinction and non-extinction
conditions.

Roughly speaking, for the problems (1.2), there is a comparison between the
diffusion term and the absorption term, and fast diffusion or strong absorption
will lead any bounded nonnegative solution to zero in finite time. But in(1.3), the
nonlinear source uq is physically called the “hot source”, while in (1.2), the source
−uq is called the “cool source”; the different sources have completely different
influences on the properties of solutions (we refer the readers to [13,15-18]). But
as far as we know, few works are concerned with problem (1.1) which both have
“hot source” and “cool source” . The purpose of the present paper is to establish
sufficient conditions about the extinction and decay estimations of solutions for
problem (1.1). For the proof of our result, we employ Lp-integral model estimate
methods and two crucial lemmas on differential inequality.

The existence of solutions to (1.1) has been obtained by Zeng [18]. It is well
known that problem (1.1) is degenerate if p > 2 or singular if 1 < p < 2, since
the modulus of ellipticity is degenerate (p > 2) or blows up (1 < p < 2) at points
where ∇u = 0, and therefore there is no classical solution in general. For this,
a nonnegative weak solution for problem (1.1) is defined as follows. For conve-
nience, define ΩT = Ω × (0, T), T > 0.

Definition 1.1. A nonnegative function u is called a weak solution of problem

(1.1), if and only if u ∈ L∞(ΩT)∩ Lp(0, T; W
1,p
0 (Ω)), ut ∈ L2(ΩT), and there holds

∫∫

ΩT

(−uϕt + |∇u|p−2∇u∇ϕ − λ|u|m−1uϕ + βuϕ)dxdt = 0, (1.4)

and

lim
t→0+

∫

Ω

|u(x, t)− u0(x)|dx = 0,

where the text function ϕ(x, t) ∈ C∞

0 (ΩT).

Remark 1.2. To define weak solutions for the problem with arbitrary non-

negative function ψ ∈ L∞(ΩT) ∩ Lp(0, T; W
1,p
0 (Ω)) as its boundary value, it suf-

fices to require u − ψ in L∞(ΩT) ∩ Lp(0, T; W
1,p
0 (Ω)) instead of u ∈ L∞(ΩT) ∩

Lp(0, T; W
1,p
0 (Ω)). Furthermore, because of the denseness of C∞

0 (ΩT) in Lp(0, T;

W
1,p
0 (Ω)), one can assert that the above equality holds for any ϕ ∈ L∞(ΩT) ∩

Lp(0, T; W
1,p
0 (Ω)).

Similarly, to define a subsolution (resp., supersolution) u(x, t) (resp., u(x, t)),
we need only demand u(x, 0) ≤ u0(x) (resp., u(x, 0) ≥ u0(x)) in Ω, u(x, t) ≤ 0
(resp., u(x, t) ≥ 0) on ∂Ω × [0, T], and equality in (1.4) is replaced by ≤ (resp., ≥)
for every ϕ(x, t) > 0.
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This work is organized as follows. In Section 2, we describe some necessary
mathematical preliminaries which are required for establishing our results. Sec-
tion 3 is devoted to extinction and decay estimates of the solution. We will prove
non-extinction results in Section 4.

2 Preliminary results

Before studying our problem, we will give some lemmas, which will be useful
tools in our later proofs. Firstly, we introduce the following lemma on the prop-
erties of the first eigenvalue λ1 and the corresponding eigenfunction φ(x) to the
problem

−div(|∇φ|p−2∇φ) = λ|φ|p−2φ, in Ω; φ|∂Ω = 0. (2.1)

In this paper, we choose φ(x) > 0 in Ω and maxx∈Ω φ(x) = 1.

Lemma 2.1. There exists a positive constant λ1(Ω) with the following proper-
ties:

(i) For any λ < λ1(Ω), the eigenvalue problem (2.1) has only the trivial solu-
tion φ(x) ≡ 0.

(ii) There exists a positive solution φ ∈ W
1,p
0 (Ω) ∩ C(Ω) of (2.1) if and only if

λ = λ1(Ω).
(iii) The collection consisting of all solutions of (2.1) with λ = λ1(Ω) is a one-

dimensional vector space.
(iv) If Ω1 and Ω2 are bounded domains with smooth boundary satisfying

Ω1 ⊂ Ω2, then λ1(Ω1) > λ1(Ω2).
(v) Let {Ωn} be a sequence of bounded domains with smooth boundaries such

that Ωn ⊂ Ωn+1 and ∪∞

n=1Ωn = Ω, then limn→∞ λ1(Ωn) = λ1(Ω).
This lemma follows from Lemmas 2.1, 2.2 in [19] and Lemma 1.1 in [20].
The properties of the first eigenvalue θ1 and the corresponding eigenfunction

ψ(x) of the eigenvalue problem

△ψ = θψ, in Ω; ψ|∂Ω = 0,

are well known (see [21]). Moreover, we can define θ1 using the “Rayleigh quo-
tient”:

θ1 = inf
u∈H1

0(Ω),u 6=0

∫

Ω
|∇u|2dx

∫

Ω
u2dx

.

We give a similar quotient for the first eigenvalue λ1 of (2.1) as follows.

Lemma 2.2.

λ1 = inf
u∈W

1,p
0 (Ω),u 6=0

∫

Ω
|∇u|pdx

∫

Ω
updx

.

Lemma 2.3.(Comparison Lemma) Suppose that u(x, t), u(x, t) are a subsolu-
tion and a supersolution of (1.1) respectively, then u(x, t) ≤ u(x, t) a.e. in ΩT.

The proof of this Lemma is similar with the proof of Lemma 2.2 in [15], so we
omit it here. The following two lemmas are of crucial importance in the proofs of
decay estimates.



p-Laplacian Parabolic Equation with Nonlinear Source 885

Lemma 2.4.(see [22]) Let y(t) ≥ 0 be a solution of the differential inequality

dy

dt
+ Cyk + βy ≤ 0 (t ≥ 0), y(t0) ≥ 0, (2.2)

where C > 0 is a constant and k ∈ (0, 1). Then one has the decay estimate

y(t) ≤ [(y(T0)
1−k +

C

β
)e(k−1)β(t−T0) −

C

β
]1/(1−k), t ∈ [T0, T∗), (2.3)

y(t) ≡ 0, t ∈ [T∗,+∞), (2.4)

where T∗ = (1/(1 − k)β) ln(1 + (β/C)y(T0)
1−k).

Lemma 2.5.(see [23]) Let 0 < k < p, and let y(t) ≥ 0 be a solution of the
differential inequality

dy

dt
+ Cyk + βy ≤ γyp (t ≥ 0), y(0) ≥ 0, (2.5)

where C, γ > 0 and k ∈ (0, 1). Then there exist α > β, B > 0, such that

0 ≤ y(t) ≤ Be−αt, t ≥ 0. (2.6)

3 Extinction and decay estimates

In this section, we consider the extinction of the solution to problem (1.1). Let
|| · ||p and || · ||1,p denote Lp(Ω) and W1,p(Ω) norms, respectively, 1 ≤ p < ∞.

Theorem 3.1. Let β = 0 and m > 1, u be a weak solution of (1.1), then for
sufficiently small initial data, there exists a finite time T such that u ≡ 0 for all
(x, t) ∈ Ω × (T,+∞).

Proof. Multiplying the first equation of (1.1) by us, s > 0, and integrating over
Ω, we obtain

1

s + 1

d

dt

∫

Ω

us+1dx +
spp

(s + p − 1)p

∫

Ω

|∇u
p+s−1

p |pdx = λ
∫

Ω

|u|m−1us+1dx. (3.1)

By Lemma 2.3, if u0 ≤ kφ(x) in Ω, it can be easily verified that kφ(x) is a
supersolution of (1.1). Because maxx∈Ω φ(x) = 1, we have u(x, t) < k for all
(x, t) ∈ Ω × (0, ∞). From this, (3.1) can be rewritten as

1

s + 1

d

dt

∫

Ω

us+1dx +
spp

(s + p − 1)p

∫

Ω

|∇u
p+s−1

p |pdx ≤ km−1
∫

Ω

us+1dx.

(1)For 2N
N+2 < p < 2, let s = 1 in (3.1). By the Hölder′s inequality and Sobolev

embedding inequality, we have

∫

Ω

u2dx ≤ |Ω|
1−

2(N−p)
Np (

∫

Ω

u
Np

N−p dx)
2(N−p)

Np ≤ ρ|Ω|
1−

2(N−p)
Np (

∫

Ω

|∇u|pdx)
2
p ,
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where ρ is the embedding constant, depending only on p and N. Then we obtain
the differential inequality

1

2

d

dt

∫

Ω

u2dx + ρ−
p
2 |Ω|

N−p
N −

p
2 (
∫

Ω

u2dx)
p
2 ≤ km−1

∫

Ω

u2dx.

Choose k sufficiently small such that

km+1−p
< ρ−

p
2 |Ω|−

p
N ,

then

1

2

d

dt

∫

Ω

u2dx ≤ −ρ−
p
2 |Ω|

N−p
N −

p
2 (
∫

Ω

u2dx)
p
2

+ km−1(
∫

Ω

u2dx)1−
p
2 (
∫

Ω

u2dx)
p
2 ≤ −C(

∫

Ω

u2dx)
p
2 ,

in which

C = ρ−
p
2 |Ω|

N−p
N −

p
2 − km+1−p|Ω|1−

p
2 > 0.

We thus have

(
∫

Ω

u2dx)1−
p
2 ≤ (

∫

Ω

u2
0dx)1−

p
2 − (2 − p)Ct,

as long as the right hand side is nonnegative. From this,
∫

Ω

u2dx ≤
∫

Ω

u2
0dx[1 −

(2 − p)Ct

(
∫

Ω
u2

0dx)1−
p
2

]
2−p

2 .

Then u vanishes in finite time for sufficiently small initial data.

(2)For 1 < p <
2N

N+2 . Let s = 2N−(N+1)p
p > 1 in (3.1). By the Sobolev embed-

ding inequality and the choice of s, we have

||u||
p+s−1

p

s+1 = ||u
p+s−1

p || Np
N−p

≤ ρ||∇u
p+s−1

p ||p.

We conclude that

1

s + 1

d

dt

∫

Ω

us+1dx + ρ−p spp

(s + p − 1)p (
∫

Ω

us+1dx)
p+s−1

s+1 ≤ km−1
∫

Ω

us+1dx.

By the similar argument as above, we can get u vanishes in finite time. The proof
of Theorem 3.1 is complete.

Theorem 3.2. Assume that m ≤ 1, λ1 is the first eigenvalue of (2.1) φ1 > 0
with ||φ1||∞ = 1 is the eigenfunction corresponding to the eigenvalue λ1.

(1) If m = p − 1, λ ≤ λ1, then the weak solution of problem (1.1) vanishes in
the sense of || · ||2 as t → ∞.

(2) Let m < p − 1, if 2N
N+2 < p < 2 with |Ω|

N−p
N +

m−p−1
2 > λκ

p
2 or 1 < p ≤ 2N

N+2

with κ−p spp

(s+p−1)p > λ|Ω|1−
m+s
s+1 , then the weak solution of problem (1.1) vanishes

in finite time, and

||u||2 ≤ [(||u0||
1−

p
2

2 +
C1

β1
)e(

p
2 −1)β1t −

C1

β1
]2/(2−p),

2N

N + 2
< p < 2,
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||u||s+1 ≤ [(||u0||
2−p
s+1
s+1 +

C2

β2
)e

p−2
s+1 β2t −

C2

β2
](s+1)/(2−p), 1 < p ≤

2N

N + 2
,

for t ∈ [0, T∗), where κ is the embedding constant defined below, s =
2N−(N+1)p

p ,

0 < T∗ ≤

{

T1, 2N
N+2 < p < 2,

T2, 1 < p ≤ 2N
N+2 ,

and C1, C2, T1, and T2 are given by (3.15), (3.16), (3.17), and (3.18), respectively.
Proof. (1) First of all, we show that

||u(x, t)||∞ ≤ ||u0(x)||∞ := M. (3.2)

Multiplying (1.1) by (u − M)+ and integrating over Ω, we obtain

1

2

d

dt

∫

Ω

(u − M)2
+dx +

∫

AM(t)
|∇u|p−2∇u∇udx

≤ λ
∫

Ω

um(u − M)+dx − β
∫

Ω

u(u − M)+dx ≤ λ
∫

AM(t)
updx, (3.3)

where AM(t) = {x ∈ Ω|u(x, t) > M}. Since λ1 is the first eigenvalue, then we
have

∫

Ω

|∇u|pdx ≥ λ1

∫

Ω

updx,

for any u ∈ W
1,p
0 (Ω). We further have

∫

AM(t)
|∇u|pdx ≥ λ1

∫

AM(t)
updx. (3.4)

Therefore, we have
d

dt

∫

Ω

(u − M)2
+dx ≤ 0. (3.5)

Since
∫

Ω
(u − M)2

+dx = 0, it follows that

∫

Ω

(u − M)2
+dx ≡ 0, ∀ t > 0, (3.6)

which implies that ||u(x, t)||∞ ≤ ||u0(x)||∞.
Multiplying (1.1) by u and integrating over Ω, we conclude that

1

2

d

dt

∫

Ω

u2dx +
∫

Ω

|∇u|p−2∇u∇udx ≤ λ
∫

Ω

updx − β
∫

Ω

u2dx. (3.7)

We further have

1

2

d

dt

∫

Ω

u2dx + (λ1 − λ)
∫

Ω

updx + β
∫

Ω

u2dx ≤ 0. (3.8)

Let v = u/M. Then, we have

d

dt

∫

Ω

v2dx + 2Mp−2(λ1 − λ)
∫

Ω

vpdx + 2β
∫

Ω

v2dx ≤ 0. (3.9)
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Since 1 < p < 2, we have

d

dt

∫

Ω

v2dx + 2M2(p−2)(λ1 − λ + β)
∫

Ω

v2dx ≤ 0,

which implies that

∫

Ω

v2dx ≤ e−2M2(p−2)(λ1−λ+β)t
∫

Ω

v2
0dx, (3.10)

that is,
∫

Ω

u2dx ≤ e−2||u0||
2(p−2)
∞ (λ1−λ+β)t

∫

Ω

u2
0dx. (3.11)

Therefore, we conclude that ||u(x, t)||2 → 0 as t → ∞.
(2) Multiplying (1.1) by us and integrating over Ω, we have

1

s + 1

d

dt

∫

Ω

us+1dx +
spp

(s + p − 1)p

∫

Ω

|∇u
p+s−1

p |pdx =

λ
∫

Ω

|u|m−1us+1dx − β
∫

Ω

us+1dx. (3.12)

In the first case 2N
N+2 < p < 2, let s = 1 in (3.12). By the Hölder′s inequality and

Sobolev embedding inequality, we have

∫

Ω

u2dx ≤ |Ω|
1−

2(N−p)
Np (

∫

Ω

u
Np

N−p dx)
2(N−p)

Np ≤ κ|Ω|
1−

2(N−p)
Np (

∫

Ω

|∇u|pdx)
2
p . (3.13)

where κ is the embedding constant, depending only on p and N. By (3.12) and
(3.13), we obtain the differential inequality

1

2

d

dt

∫

Ω

u2dx + κ−
p
2 |Ω|

N−p
N −

p
2 (
∫

Ω

u2dx)
p
2 ≤ λ

∫

Ω

|u|m+1dx − β
∫

Ω

u2dx. (3.14)

Since m ≤ 1, m + 1 < p, according to Hölder′s inequality, we have

1

2

d

dt

∫

Ω

u2dx + κ−
p
2 |Ω|

N−p
N −

p
2 (
∫

Ω

u2dx)
p
2 ≤ λ|Ω|

1−m
2 (

∫

Ω

u2dx)
m+1

2 − β
∫

Ω

u2dx

≤ λ|Ω|
1−m

2 (
∫

Ω

u2dx)
p
2 − β

∫

Ω

u2dx.

So we can get

d

dt

∫

Ω

u2dx + C1(
∫

Ω

u2dx)
p
2 + β1

∫

Ω

u2dx ≤ 0, (3.15)

where C1 = 2(κ−
p
2 |Ω|

N−p
N −

p
2 − λ|Ω|

1−m
2 ) > 0, β1 = 2β > 0. Setting

y(t) = ||u(x, t)||2 , y(0) = ||u0(x)||2, by Lemma 2.4, we obtain

||u||2 ≤ [(||u0||
1−

p
2

2 +
C1

β1
)e(

p
2 −1)β1t −

C1

β1
]2/(2−p), t ∈ [0, T1),
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||u||2 ≡ 0, t ∈ [T1,+∞),

where

T1 =
2

(2 − p)β1
ln(1 +

β1

C1
||u0||

1−
p
2

2 ). (3.16)

We now turn to the case 1 < p ≤ 2N
N+2 , let s = 2N−(N+1)p

p > 1 in (3.12). By the

Sobolev embedding inequality and the choice of s, we have

||u||
p+s−1

p

s+1 = ||u
p+s−1

p || NP
N−p

≤ κ||∇u
p+s−1

p ||p,

∫

Ω

|u|m+sdx ≤ |Ω|1−
m+s
s+1 (

∫

Ω

us+1dx)
m+s
s+1 ≤ |Ω|1−

m+s
s+1 (

∫

Ω

us+1dx)
p+s−1

s+1 .

We conclude that

d

dt

∫

Ω

us+1dx + C2(
∫

Ω

us+1dx)
p+s−1

s+1 + β2

∫

Ω

us+1dx ≤ 0, (3.17)

where C2 = (s + 1)(κ−p spp

(s+p−1)p − λ|Ω|1−
m+s
s+1 ) > 0, β2 = (s + 1)β > 0. Setting

y(t) = ||u(x, t)||s+1, y(0) = ||u0(x)||s+1, by Lemma 2.4, we obtain

||u||s+1 ≤ [(||u0||
2−p
s+1
s+1 +

C2

β2
)e

p−2
s+1 β2t −

C2

β2
](s+1)/(2−p), t ∈ [0, T2),

||u||s+1 ≡ 0, t ∈ [T2,+∞),

where

T2 =
s + 1

(2 − p)β2
ln(1 +

β2

C2
||u0||

2−p
s+1
s+1). (3.18)

The proof of Theorem 3.2 is complete.

Theorem 3.3. Let p < m + 1, then the weak solution u of (1.1) vanish in finite
time, and

0 ≤ ||u||2 ≤ Be−αt, t ∈ [0, T3),

||u||2 ≤ [(||u0||
1−

p
2

2 +
C3

β3
)e(

p
2−1)β3(t−T3) −

C3

β3
]2/(2−p), t ∈ [T3, T4),

||u||2 ≡ 0, t ∈ [T4,+∞),

where C3, T3, and T4 are given by (3.20), (3.21) and (3.22), respectively.
Proof. Multiplying (1.1) by u, and by the embedding theorem and the Hölder′s

inequality, we can easily obtain

d

dt

∫

Ω

u2dx + 2κ−
p
2 |Ω|

N−p
N −

p
2 (
∫

Ω

u2dx)
p
2 + 2β

∫

Ω

u2dx ≤

2λ|Ω|
1−m

2 (
∫

Ω

u2dx)
m+1

2 . (3.19)

By Lemma 2.5, there exist α > β, B > 0, such that

0 ≤ ||u||2 ≤ Be−αt, t ≥ 0.
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Furthermore, there exist T3, such that

2[κ−
p
2 |Ω|

N−p
N −

p
2 − λ|Ω|

1−m
2 (

∫

Ω

u2dx)
m+1−p

2 ] ≥ 2[κ−
p
2 |Ω|

N−p
N −

p
2

−λ|Ω|
1−m

2 (Be−αT3)m+1−p] := C3 ≥ 0. (3.20)

holds for t ∈ [T3,+∞). Therefore, (3.19) turns to

d

dt

∫

Ω

u2dx + C3(
∫

Ω

u2dx)
p
2 + β3

∫

Ω

u2dx ≤ 0. (3.21)

By Lemma 2.4, we can obtain the desire decay estimate for

T4 =
2

(2 − p)β3
ln(1 +

β3

C3
||u0||

2−p
2

2 ). (3.22)

The proof of Theorem 3.3 is complete.

4 Non-extinction of the solution

In this section, we investigate the conditions under which the solution u(x, t) of
(1.1) cannot become extinction.

Theorem 4.1. For β < 0, m = p − 1, if one of the following cases holds:
(1) λ > λ1;
(2) λ = λ1, and u0(x) is identically positive,
then the weak solution u of (1.1) cannot vanish after finite time.
Proof. For m = p − 1, λ > λ1, let v(x, t) = g(t)φ(x), and g(t) = [(λ − λ1)

(2 − p)t]
1

2−p , and φ(x) be the first eigenfunction of the eigenvalue problem (2.1).
We will show that v(x, t) is a subsolution of (1.1).

Obviously, g(t) satisfies the ordinary differential equation

g′(t) = (λ − λ1)g
p−1(t), (4.1)

g(0) = 0, g(t) > 0, t > 0.

Next, by applying (4.1) and φ(x) > 0 in Ω, maxx∈Ω φ(x) = 1, we can easily get
∫ ∫

ΩT

vt(x, s)ϕ(x, s)dxds +
∫ ∫

ΩT

(|∇v|p−2∇v∇ϕ − λvm ϕ(x, s)

+βg(s)φ(x)ϕ(x, s))dxds ≤
∫ ∫

ΩT

(λ − λ1)g
p−1(s)φ(x)ϕ(x, s)dxds

+
∫ ∫

ΩT

[λ1gp−1(s)φp−1(x)− λgm(s)φm(x)]ϕ(x, s)dxds ≤ 0.

Moreover, v(x, 0) = φ(x)g(0) ≤ u0(x) in Ω, and v|Ω = 0. Then, according to
Lemma 2.3, we have u(x, t) ≥ v(x, t) > 0 in Ω × (0, 1).

Next, for the case m = p − 1, λ = λ1, it is easily proved that aφ(x), a > 0, is
a steady state solution of (1.1). Then for any positive initial data, we can choose
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a sufficiently small such that u0(x) ≥ aφ(x) in Ω. According to Lemma 2.3, we
have that aφ(x) is a subsolution of (1.1). The proof of Theorem 4.1 is complete.

Theorem 4.2. For β < 0, m < p − 1, the weak solution u of (1.1) cannot vanish
in finite time for any nonnegative initial data u0.

Proof. For m < p − 1, define

h(t) = (
λ

λ1
)

1
p−m−1 (2 − exp(−Mt))

1
1−m ,

in which M ∈ (0, (p − m − 1)(
λ1−m

1

λ2−p )
1

p−m−1 ).

Let v(x, t) = h(t)φ(x), and φ(x) be the first eigenfunction of the eigenvalue
problem (2.1). We will show that v(x, t) is a subsolution of (1.1).

Then we can get

h′(t) =
M

1 − m
(

λ

λ1
)

1
p−m−1 (2 − exp(−Mt))

m
1−m exp(−Mt), (4.2)

− λ1hp−1 + λhm =

(
λp−1

λm
1

)
1

p−m−1 (2 − exp(−Mt))
m

1−m [2 − (2 − exp(−Mt))
p−m−1

1−m ]. (4.3)

For 0 <
p−m−1

1−m < 1, we have

(2 − exp(−Mt))
p−m−1

1−m ≤ −
p − m − 1

1 − m
exp(−Mt) + 2. (4.4)

By (4.2)-(4.4), the following equation is satisfied,

− λ1hp−1 + λhm ≥

p − m − 1

1 − m
(

λp−1

λm
1

)
1

p−m−1 (2 − exp(−Mt))
m

1−m exp(−Mt)

>
M

1 − m
(

λ

λ1
)

1
p−m−1 (2 − exp(−Mt))

m
1−m exp(−Mt) = h′(t).

Applying the same argument as in the proof of Theorem 4.1, we can easily prove
that v(x, t) is a subsolution of (1.1), then extinction in finite time cannot occur.

5 Conclusion

The boundary value problems of quasilinear differential equation (1.1) are math-
ematical models occurring in the studies of the p-Laplace equation, generalized
reaction-diffusion theory, non-Newtonian fluid theory, and the turbulent flow of
a gas in porous medium. In the non-Newtonian fluid theory, p is a characteristic
quantity of the medium. Media with p > 2 are called dilatant fluids and those
with p < 2 are called pseudoplastics. If p = 2, they are Newtonian fluids. In
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1979, Gidas, Ni and Nirenberg [26] proved some very interesting facts, for exam-
ple, they showed that all positive solution in C2(BR) of the problem

{

△u + f (u) = 0 in BR

u(x) = 0 on ∂BR
(5.1)

are radially symmetric solutions for very general f . They also proved that no such
results can automatically apply to the annulus (see also [27]). Unfortunately, this
result does not apply to the case p 6= 2. Kichenassary and Smoller showed that
there exist many positive nonradial solutions of the above problem for some f
(see [25]). The major stumbling block in the case of p 6= 2 is that certain nice
features inherent to the case p = 2 seem to be lost or at least difficult to verify.
The main differences between p = 2 and p 6= 2 can be found in [7,8]. In the case
of (5.1), the solutions are classical (that is, smooth), but in the case of the problem

{

div(|∇u|p−2∇u) + f (u) = 0 in Ω

u(x) = 0 on ∂Ω
(5.2)

belong to C1+α(Ω) for some α(0 < α < 1) but not always to C2(Ω). For example,
when the domain Ω is a ball centered at the origin 0, the function u(x) defined by

u(x) = a|x|p/(p−1) + b,

with constants a and b (a < 0, b > 0), is a solution to the problem

{

−div(|∇u|p−2∇u) = 1 in Ω

u(x) = 0 on ∂Ω.
(5.3)

Moreover, the solutions of (5.2) on a symmetric domain are not necessarily radi-
ally symmetric. Tolksdorf [28] showed that there exist solutions of the problem

−div(|∇u|p−2∇u) = 0 in R2

that are of the form
u(x) = rλφ(θ),

where r = |x|.
In this paper, based on the Lp-integral model estimate methods and two cru-

cial lemmas on differential inequality, we study the extinction phenomenon of
solutions to problem (1.1) which the right hand side functions are more general.
Finally, non-extinction results are obtained by super and sub-solution method.
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