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Abstract

Classical solutions of initial problems for nonlinear functional differen-
tial equations of Hamilton–Jacobi type are approximated by solutions of as-
sociated differential difference systems. A method of quasilinearization is
adopted. Sufficient conditions for the convergence of the method of lines
and error estimates for approximate solutions are given. Nonlinear estimates
of the Perron type with respect to functional variables for given operators
are assumed. The proof of the stability of differential difference problems is
based on a comparison technique. The results obtained here can be applied to
differential integral problems and differential equations with deviated vari-
ables.

1 Introduction

The method of lines for evolution functional differential equations is obtained
by replacing partial derivatives with respect to spatial variables with difference
expressions. Differential equations contain functional variables which are ele-
ments of the set of continuous functions defined on subsets of a finite dimen-
sional space. Then we need some interpolating operators. This leads to initial
problems for systems of ordinary functional differential equations. Such obtained
differential difference problems satisfy consistency condition on sufficiently reg-
ular solutions of original problems. The main question in these considerations
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is to find sufficient conditions for the stability of the numerical method of lines.
Methods of differential inequalities and comparison techniques are used in the
investigations of the stability.

There is an ample literature on the numerical method of lines for evolution
differential or functional differential equations. The monographs [9], [10], [11],
[20], [21], [22], [26] contain a large bibliography on theoretical investigations and
applications.

The papers [5], [15] initiated a theory of the numerical method of lines for
functional differential equations. Nonlinear parabolic functional differential equa-
tions with initial boundary value conditions were investigated in [13], [14], [16],
[18], [27]. Results concerning the stability of the method of lines were obtained in
these papers by using a comparison technique.

The papers [1], [2], [6], [7], [12], [28] concern equations with first order par-
tial derivatives. Initial problems with solutions defined on the Haar pyramid
and initial boundary value problems were considered. Error estimates implying
the convergence of the method are obtained by using a method of differential
inequalities. It is assumed that given operators satisfy nonlinear estimates of the
Perron type with respect to functional variables.

The monograph [11] contains an exposition of the method of lines for hyper-
bolic functional differential problems.

The method is also treated as a tool for proving existence theorems for
differential problems corresponding to parabolic equations [22] - [24] or hyper-
bolic problems [3], [4], [8], [17], [19].

The aim of the paper is to construct a method of lines for nonlinear first or-
der partial functional differential equations with initial conditions and solutions
defined on the Haar pyramid. Our results are based on the following idea. The
original problem is transformed into a system of quasilinear functional differ-
ential equations for an unknown function and for their partial derivatives with
respect to spatial variables. The numerical method of lines is constructed for
systems such obtained.

All the results on the numerical method of lines given in [1], [2], [5] - [7], [12] -
[14], [27], [28] have the following property. The authors have assumed that given
operators satisfy the Lipschitz condition or satisfy nonlinear estimates of the Per-
ron type with respect to functional variables and these conditions are global with
respect to all variables. Our assumptions on regularity of given functions are
more general. We construct estimates of solutions of initial problems for first
order partial functional differential equations and solutions of differential differ-
ence systems. We assume that nonlinear estimates of the Perron type and suitable
inequalities are local with respect to functional variables. It is clear that there are
differential equations with deviated variables and differential integral equations
such that local estimates of the Perron type hold and global inequalities are not
satisfied.

We use in the paper general ideas for functional differential equations and
inequalities which were introduced in [11], [25].

We formulate our functional differential problems. For any metric spaces X
and Y, by C(X, Y) we denote the class of all continuous functions from X into Y.
We use vectorial inequalities with the understanding that the same inequalities
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hold between their corresponding components.
Let E be the Haar pyramid

E = {(t, x) ∈ R
1+n : t ∈ [0, a], −b + Mt ≤ x ≤ b − Mt}

where a > 0, b, M ∈ R
n
+, b = (b1, . . . , bn), M = (M1, . . . , Mn) and b > Ma. Write

E0 = [−b0, 0]× [−b, b].

For (t, x) ∈ E we define

D[t, x] = {(τ, y) ∈ R
1+n : τ ≤ 0, (t + τ, x + y) ∈ E0 ∪ E}.

Then the set D[t, x] is a sum of the following sets

D0[t, x] = {(τ, y) ∈ R
1+n : −b0 − t ≤ τ ≤ −t, −x − b ≤ y ≤ −x + b},

D⋆[t, x] = {(τ, y) ∈ R
1+n : −t ≤ τ ≤ 0,

− b − x + M(t + τ) ≤ y ≤ b − x − M(t + τ)}.

Let B = [−b0 − a, 0] × [−2b, 2b] then D[t, x] ⊂ B for (t, x) ∈ E. For a function
z : E0 ∪ E → R and for a point (t, x) ∈ E we define z(t,x) : D[t, x] → R by

z(t,x)(τ, y) = z(t + τ, x + y), (τ, y) ∈ D[t, x].

The function z(t,x) is the restriction of z to the set (E0 ∪ E) ∩ ([−b0, t] ×R
n) and

this restriction is shifted to the set D[t, x].
Let φ0 : [0, a] → R and φ : E → R

n, φ = (φ1, . . . , φn), be given functions. The
requirements on φ0 and φ are that 0 ≤ φ0 ≤ t for t ∈ [0, a] and (φ0(t), φ(t, x)) ∈ E
for (t, x) ∈ E. Write ϕ(t, x) = (φ0(t), φ(t, x)) on E.

Put Ω = E×C(B,R)×C(B,R)×R
n and suppose that f : Ω → R, ψ : E0 → R

are given functions. We will say that f satisfies condition (V) if for each (t, x, q) ∈
E × R

n and for v, ṽ, w, w̃ ∈ C(B,R) such that v(τ, y) = ṽ(τ, y) for (τ, y) ∈
D[t, x] and w(τ, y) = w̃(τ, y) for (τ, y) ∈ D[ϕ(t, x)] we have f (t, x, v, w, q) =
f (t, x, ṽ, w̃, q). Note that the condition (V) means that the value of f at the point
(t, x, v, w, q) ∈ Ω depends on (t, x, q) and on the restrictions of v and w to the sets
D[t, x] and D[ϕ(t, x)] only.

Let z be an unknown function of the variables (t, x) = (t, x1, . . . , xn). We
consider the functional differential equation

∂tz(t, x) = f (t, x, z(t,x), zϕ(t,x), ∂xz(t, x)), (1)

with the initial condition

z(t, x) = ψ(t, x) on E0 (2)

where ∂xz = (∂x1
z, . . . , ∂xnz). In the paper we assume that f satisfies the condition

(V) and we consider classical solutions of (1), (2).
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Our concern is the method of lines for problem (1), (2). In the first step we
construct a quasilinear system of functional differential equations for z and u =
∂xz. We use a discretization with respect to spatial variable x for such obtained
system. Then we associate with (1), (2) a net of Cauchy problems for ordinary
functional differential equations. Solutions of such systems are considered as
approximate solution of (1), (2). Then we estimate the difference between the
exact and approximate solutions of (1), (2) and, as a consequence, we prove that
approximate solutions converge to the classical solution of (1), (2). We present a
complete convergence analysis for the method and we give numerical examples.

The paper is organized as follows. In Section 2 we formulate a numerical
method of lines for (1), (2). In the next section we prove that there exists exactly
one solution of the Cauchy problem for differential difference equations gener-
ated by (1), (2). We give estimates of solutions of (1), (2) and solutions of ordinary
functional differential equations. A convergence result and an error estimate of
approximate solutions are presented in Section 4. Examples are given in the last
part of the paper.

2 Differential difference problems

We denote by Mn×n the class of all n× n matrices with real elements. If U ∈ Mn×n

then UT is the transpose matrix. For x, y ∈ R
n, x = (x1, . . . , xn), y = (y1, . . . , yn)

and U ∈ Mk×n, U = [uij]i,j=1,...,n, we put

x ⋄ y = (x1y1, . . . , xnyn), ‖x‖ =
n

∑
i=1

|xi|,

‖x‖∞ = max {|xi| : 1 ≤ i ≤ n}, ‖U‖ = max {
n

∑
j=1

|uij| : 1 ≤ i ≤ n}.

We denote by CL(B,R) the set of all linear and continuous real functions defined
on C(B,R) and by ‖ · ‖⋆ the norm in CL(B,R) generated by the maximum norm
in C(B,R).

For each (t, x) ∈ E we define the sets I0[t, x], I−[t, x], I+[t, x] ⊂ {1, . . . , n} as
follows:

−bi + Mit < xi < bi − Mit for i ∈ I0[t, x],

xi = −bi + Mit for i ∈ I−[t, x], xi = bi − Mit for i ∈ I+[t, x],

I0[t, x] ∪ I−[t, x] ∪ I+[t, x] = {1, . . . , n}, I−[t, x] ∩ I+[t, x] = ∅.

We need assumptions on ϕ, f and ψ.
Assumption H[ϕ]. The functions φ0 : [0, a] → R and φ : E → R

n, φ = (φ1, . . . , φn),
are continuous and

1) 0 ≤ φ0 ≤ t, for t ∈ [0, a] and ϕ(t, x) = (φ0(t, x), φ(t, x)) for (t, x) ∈ E,

2) partial derivatives ∂xφ = [∂xi
φj]i,j=1,...,n exist on E and ∂xφ ∈ C(E, Mn×n),

3) Q ∈ R+ is defined by the relation ‖∂xφ(t, x)‖ ≤ Q on E.
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Assumption H[ f , ψ]. The function f : Ω → R of the variables (t, x, v, w, q),
x = (x1, . . . , xn), q = (q1, . . . , qn), is continuous and satisfies the condition (V),
moreover

1) the partial derivatives (∂x1
f (P), . . . , ∂xn f (P)) = ∂x f (P), (∂q1

f (P), . . . ,
∂qn f (P)) = ∂q f (P) and the Fréchet derivatives ∂v f (P), ∂w f (P) exist for
P = (t, x, v, w, q) ∈ Ω,

2) ∂x f , ∂q f ∈ C(Ω,Rn), ∂v f , ∂w f ∈ CL(B,R),

3) the function ∂q f satisfies the conditions:

(i) if x ∈ [−b, b] \ [−b + Ma, b − Ma] and (t, x, v, w, q) ∈ Ω then

x ⋄ ∂q f (t, x, v, w, q) ≤ 0[n] (3)

where 0[n] = (0, . . . , 0) ∈ R
n,

(ii) if x ∈ [−b + Ma, b − Ma] then the function

sign ∂q f (·, x, ·) : [0, a]× C(B,R)× C(B,R)×R
n → R

n, (4)

sign ∂q f (·, x, ·) = (sign ∂q1
f (·, x, ·), . . . , sign ∂qn f (·, x, ·)),

is constant,

4) ψ : E0 → R is of class C2.

We define a mesh on the set E0 ∪ E with respect to the spatial variable. Let
h = (h1, . . . , hn), hi > 0 for 1 ≤ i ≤ n, stand for steps of the mesh. Let us denote
by H the set of all h such that there is K = (K1, . . . , Kn) ∈ N

n with the property
K ⋄ h = b. For h ∈ H and for m ∈ Z

n, m = (m1, . . . , mn), we put

x(m) = m ⋄ h, x(m) = (x
(m1)
1 , . . . , x

(mn)
n ).

Write
R1+n

t.h = {(t, x(m)) : t ∈ R, m ∈ Z
1+n}

and
Eh = E ∩ R1+n

t.h , Eh.0 = E0 ∩ R1+n
t.h , Bh = B ∩ R1+n

t.h .

Elements of the set E0.h ∪ Eh will be denoted by (t, x(m)) or (t, x). By Fc(Bh,R)

we denote the class of all w : Bh → R such that w(·, x(m)) ∈ C([−b0 − a, 0],R)
for −K ≤ m ≤ K. In a similarly way we define the space Fc(Bh,Rn). For a
functions z : E0.h ∪ Eh → R, u : E0.h ∪ Eh → R

n, u = (u1, . . . , un), we write

z(m)(t) = z(t, x(m)), u(m)(t) = u(t, x(m)).

Suppose that Assumption H[ f , ψ] is satisfied. For x(m) ∈ (−b, b) we put

J+[m] = {i ∈ {1, . . . , n} : ∂qi
f (·, x(m), ·) ≥ 0},

J−[m] = {1, . . . , n} \ J+[m].
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We construct the numerical method for (1), (2). Write ei = (0, . . . , 0, 1, 0, . . . ,
0) ∈ R

n with 1 standing on the i − th place. For functions z : E0.h ∪ Eh → R,
u : E0.h ∪ Eh → R

n, u = (u1, . . . , un), we write

δiz
(m)(t) =

1

hi
[z(m+ei)(t)− z(m)(t)] for i ∈ J+[m], (5)

δiz
(m)(t) =

1

hi
[z(m)(t)− z(m−ei)(t)] for i ∈ J−[m], (6)

δiu
(m)(t) =

1

hi
[u(m+ei)(t)− u(m)(t)] for i ∈ J+[m], (7)

δiu
(m)(t) =

1

hi
[u(m)(t)− u(m−ei)(t)] for i ∈ J−[m], (8)

and we put i = 1, . . . , n in above definitions. Set

δz(m)(t) = (δ1z(m)(t), . . . , δnz(m)(t)), δu(m)(t) = [δju
(m)
i (t)]i,j=1,...,n.

Since equation (1) contains the functional variables z(t,x) and zϕ(t,x) which are

elements of the spaces C(D[t, x],R) and C(D[ϕ(t, x)],R) then we need an inter-
polating operator Th : Fc(Bh,R) → C(B,R). For a simplicity we write Thz[t,m]
instead of Thz(t,x(m)) and Thzϕ[t,m] instead of Thzϕ(t,x(m)) where z : E0.h ∪ Eh → R.

Let us denote

P[z, u](m)(t) = (t, x(m), Thz[t,m], Thzϕ[t,m], u(m)(t)).

Write

Fh[z, u](m)(t) = f (P[z, u](m)(t)) +
n

∑
i=1

∂qi
f (P[z, u](m)(t))(δiz

(m)(t)− u
(m)
i (t))

and

Gh[z, u](m)(t) = ∂x f (P[z, u](m)(t)) + ∂v f (P[z, u](m)(t)) ⋆ Thu[t,m]

+
[

∂w f (P[z, u](m)(t)) ⋆ Thuϕ[t,m]

]
∂xφ(m)(t) + ∂q f (P[z, u](m)(t))

[
δu(m)(t)

]T
,

where Gh = (Gh.1, . . . , Gh.n) and

∂v f (P) ⋆ Thu[t,m] =
(

∂v f (P) ⋆ Th(u1)[t,m], . . . , ∂v f (P) ⋆ Th(un)[t,m]

)

and [
∂w f (P) ⋆ Thuϕ[t,m]

]
∂xφ(m)(t)

=

( n

∑
i=1

∂w(P)Th(ui)ϕ[t,m]∂x1
φ
(m)
i (t), . . . ,

n

∑
i=1

∂w(P)Th(ui)ϕ[t,m]∂xn φ
(m)
i (t)

)

where P ∈ Ω. We consider the system of functional differential equations

d

dt
z(m)(t) = Fh[z, u](m)(t), (9)
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d

dt
u(m)(t) = Gh[z, u](m)(t) (10)

with initial conditions

z(m)(t) = ψ
(m)
h (t), u(m)(t) = Ψ

(m)
h (t) on E0.h (11)

where ψh : E0.h → R and Ψh : E0.h → R
n, Ψh = (Ψh.1, . . . , Ψh.n), are given

functions. The differential difference problem (9) - (11) is called a method of lines
for (1), (2). This method is obtained in the following way.

We use a method of quasilinearization for (1), (2). It means that we transform
the nonlinear initial problem (1), (2) into a system of quasilinear differential equa-
tions with unknown functions (z, u) where u = ∂xz. Suppose that Assumption
H[ f , ψ] is satisfied. We consider the following linearization of equation (1) with
respect to u

∂tz(t, x) = f (U[t, x]) +
n

∑
i=1

∂qi
f (U[t, x])(∂xi

z(t, x)− ui(t, x)) (12)

where U[t, x] = (t, x, z(t,x), zϕ(t,x), u(t, x)). Differential equations for u are ob-
tained by differentiating equation (1) with respect to the spatial variable

∂tu(t, x) = ∂x f (U[t, x]) + ∂v f (U[t, x]) ⋆ u(t,x)

+
[
∂w f (U[t, x]) ⋆ uϕ(t,x)

]
∂xφ(t, x) + ∂q f (U[t, x])[∂xu(t, x)]T , (13)

where

∂v f (U[t, x]) ⋆ u(t,x) = (∂v f (U[t, x]) ⋆ (u1)(t,x), . . . , ∂v f (U[t, x]) ⋆ (un)(t,x))

and [
∂w f (U[t, x]) ⋆ uϕ(t,x)

]
∂xφ(t)

=

( n

∑
i=1

∂w(U[t, x])(ui)ϕ(t,x)∂x1
φi(t), . . . ,

n

∑
i=1

∂w(P)(ui)ϕ(t,x)∂xnφi(t)

)
.

With equations (12), (13) we consider the following initial condition

z(t, x) = ψ(t, x), u(t, x) = Ψ(t, x) on (t, x) ∈ E0. (14)

Under natural assumptions on given functions the above problem has the
properties:

(i) If (z̃, ũ) is a solution of (12) - (14) then ∂x z̃ = ũ and z̃ is a solution of (1), (2).

(ii) If z̃ is a solution of (1), (2) and ∂x z̃ = ũ then (z̃, ũ) is a solution of (12) - (14).

The differential difference problem (9) - (11) is discretization with respect to
the spatial variable of (12) - (14).



866 A. Szafrańska

3 Solutions of functional differential problems

For functions z ∈ C(E0 ∪ E,R), u ∈ C(E0 ∪ E,Rn) and zh ∈ Fc(E0.h ∪ Eh,R),
uh ∈ Fc(E0.h ∪ Eh,Rn) we define

‖z‖t = max {|z(τ, s)| : (τ, s) ∈ E0 ∪ E, τ ≤ t},

‖zh‖h.t = max {|zh(τ, s)| : (τ, s) ∈ E0.h ∪ Eh, τ ≤ t},

[|u|]t = max {‖u(τ, s)‖∞ : (τ, s) ∈ E0 ∪ E, τ ≤ t},

[|uh|]h.t = max {‖uh(τ, s)‖∞ : (τ, s) ∈ E0.h ∪ Eh, τ ≤ t}

where t ∈ [0, a]. We need the following assumptions.
Assumption H[Th]. The operator Th : Fc(Bh,R) → C(B,R) satisfies the condi-
tions

1) for w, w̄ ∈ Fc(Bh,R) we have

‖Thw − Thw̄‖B ≤ ‖w − w̄‖Bh
,

2) if w : B → R is of class C1 and wh is the restriction of w to Bh then there is
γ : H → R+ such that

‖Thwh − w‖B ≤ γ(h), lim
h→0

γ(h) = 0,

3) if θh ∈ Fc(Bh,R) is given by θh(τ, y) = 0 on Bh then (Thθh)(τ, y) = 0 for
(τ, y) ∈ B.

Example of the interpolating operator which satisfies the above assumptions
can be found in [11], Chapter VI.
Assumption H[ f , ̺]. The functions ϕ and f , ψ satisfy Assumptions H[ϕ] and
H[ f , ψ], moreover

1) there is ̺ ∈ C([0, a)×R+ ×R+,R+) such that

‖∂x f (P)‖∞ ≤ ̺(t, max {‖v‖B, ‖w‖B}, ‖q‖) on Ω

and the function ̺ is nondecreasing with respect to the last two variables,

2) the constant A ∈ R+ is defined by the relation

| f (t, x, θ, θ, 0[n])| ≤ A, (t, x) ∈ E,

where θ ∈ C(B,R) and θ(τ, s) = 0 for (τ, s) ∈ B,

3) there is A0 ∈ R such that for a point P = (t, x, v, w, q) ∈ Ω we have

‖∂v f (P)‖⋆ , ‖∂w f (P)‖⋆ ≤ A0,

4) for P = (t, x, v, w, q) ∈ Ω we have

(|∂q1
f (P)|, . . . , |∂qn f (P)|) ≤ (M1, . . . , Mn) = M,
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5) for every (µ, ν) ∈ R+ × R+ there exists on [0, a] the maximal solution
(ω0(·, µ, ν), ω(·, µ, ν)) of the problem

λ′(t) = A + 2A0λ(t) + 2‖M‖η(t), (15)

η′(t) = ̺(t, λ(t), η(t)) + A0(1 + Q)η(t), (16)

(λ(0), η(0)) = (µ, ν), (17)

6) ψh : E0.h ∪ Eh → R, Ψh : E0.h ∪ Eh → R
n and there are α0, α : H → R+ such

that

|ψ(t, x)− ψh(t, x)| ≤ α0(h) and ‖∂xψ(t, x)− Ψh(t, x)‖∞ ≤ α(h) on E0.h

(18)
and

lim
h→0

α0(h) = 0, lim
h→0

α(h) = 0.

Suppose that Assumption H[ f , ̺] is satisfied. Let µ̄, ν̄ ∈ R+ be defined by the
relations

|ψ(t, x)| ≤ µ̄, ‖∂xψ(t, x)‖∞ ≤ ν̄ on E0, (19)

|ψh(t, x)| ≤ µ̄, ‖Ψh(t, x)‖∞ ≤ ν̄ on E0.h, (20)

we will assume nonlinear estimates of Perron type for ∂x f , ∂v f , ∂w f , ∂q f on sub-
space of Ω. Now we construct this subspace.

Suppose that Assumption H[ f , ̺] is satisfied and µ̄, ν̄ ∈ R+ are defined by
(19), (20). Let us denote by (ω0(·, µ̄, ν̄), ω(·, µ̄, ν̄)) the maximal solution of (15) -
(17) with µ = µ̄, ν = ν̄. Set c̄ = ω0(a, µ̄, ν̄), c̃ = ω(a, µ̄, ν̄), C = (c̄, c̃) and

Ω[C] = {(t, x, v, w, q) ∈ Ω : ‖v‖B ≤ c̄, ‖w‖B ≤ c̄, ‖q‖∞ ≤ c̃}.

Assumption H[ f , σ]. The functions ϕ and f , ψ satisfy Assumptions H[ϕ], H[ f , ψ],
H[ f , ̺] and

1) σ : [0, a] ×R+ → R+ is continuous and it is nondecreasing with respect to
the second variable,

2) for each c ≥ 1 the maximal solution of the Cauchy problem

ω′(t) = c[ω(t) + σ(t, ω(t))], ω(0) = 0 (21)

is w̃(t) = 0 for t ∈ [0, a],

3) the expressions

‖∂x f (t, x, v, w, q)− ∂x f (t, x, ṽ, w̃, q̃)‖, ‖∂q f (t, x, v, w, q)− ∂q f (t, x, ṽ, w̃, q̃)‖,

‖∂v f (t, x, v, w, q)− ∂v f (t, x, ṽ, w̃, q̃)‖⋆, ‖∂w f (t, x, v, w, q)− ∂w f (t, x, ṽ, w̃, q̃)‖⋆

are estimated on Ω[C] by σ(t, max {‖v − ṽ‖B, ‖w − w̃‖B, ‖q − q̃‖}).
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Remark 3.1. It is important that we have assumed nonlinear estimates of Perron type for
∂x f , ∂v f , ∂w f , ∂q f on Ω[C]. There are differential equations with deviated variables and
differential integral equations such that condition 3) of Assumption H[ f , σ] is satisfied
and global estimates for ∂x f , ∂v f , ∂w f , ∂q f are not satisfied. We give comments on such
equations.

Set Ω̃ = E × R
2 × R

n and suppose that the function G : Ω̃ → R of the
variables (t, x, p, r, q) satisfies the conditions

1) G ∈ C(Ω̃,R) and for each (t, x) ∈ E the function G(, t, x, ·) : R2 ×R
n → R

is of class C2,

2) there is Ã ∈ R+ such that |∂pG(P)| ≤ Ã, |∂vG(P)| ≤ Ã and

(|∂q1
G(P)|, . . . , |∂qnG(P)|) ≤ (M1, . . . , Mn)

where P = (t, x, v, w, q) ∈ Ω̃,

3) there is ̺ ∈ C([0, a] ×R+ ×R+,R+) such that

(i) for each t ∈ [0, a] the function ̺(t, ·, ·) is nondecreasing,

(ii) condition 5) of Assumption H[ f , ̺] is satisfied and

‖∂xG(t, x, v, w, q)‖∞ ≤ ̺(t, max {|v|, |w|}, ‖q‖∞) on Ω̃.

Consider the operator f defined by

f (t, x, v, w, q) = G(t, x, v(0, 0[n]), w(0, 0[n]), q) on Ω. (22)

Then (1) reduces to the differential equation with deviated variables

∂tz(t, x) = G(t, x, z(t, x), z(ϕ(t, x)), ∂x z(t, x)).

Then there is L ∈ R+ such that the operator f given by (22) satisfies Assumption
H[ f , σ] for σ(t, p) = Lp, (t, p) ∈ [0, a] ∈ R+.

Set

f (t, x, v, w, q) = G(t, x,
∫

D[t,x]
v(τ, y)dydτ, w(0, 0[0]), q) on Ω. (23)

Then (1) reduces to the functional differential equation

∂tz(t, x) = G(t, x,
∫

D[t,x]
z(t + τ, x + y)dydτ, z(ϕ(t, x)), ∂x z(t, x)).

There is L ∈ R+ such that the operator given by (23) satisfies Assumption H[ f , σ]
for σ(t, p) = Lp, (t, p) ∈ [0, a]×R+.

It is important in the above examples that we do not assume that the partial
derivatives of the second order of G(t, x, ·) are bounded on Ω̃.

We give estimates of solutions of (12) - (14).
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Lemma 3.1. Suppose that Assumption H[ f , ̺] is satisfied and (z̄, ū) : E0 ∪ E → R
1+n,

ū = (ū1, . . . , ūn), are the solutions of (12) - (14) then

‖z̄‖t ≤ ω0(t, µ̄, ν̄), [|ū|]t ≤ ω(t, µ̄, ν̄), (24)

where (ω0(·, µ̄, ν̄), ω(·, µ̄, ν̄)) is the maximal solution of (15)-(17) with (µ, ν) = (µ̄, ν̄).

Proof. Write
λ̄(t) = ‖z̄‖t, η̄(t) = [|ū|]t, t ∈ [0, a].

Let us denote by (ω0( · , µ̄, ν̄, ε), ω( · , µ̄, ν̄, ε)) the maximal solution of the initial
problem

λ′(t) = A + 2A0λ(t) + 2‖M‖η(t) + ε, (25)

η′(t) = ̺(t, λ(t), µ(t)) + A0(1 + Q)η(t) + ε (26)

(λ(0), η(0)) = (µ̄ + ε, ν̄ + ε) (27)

where ε > 0. There is ε̃ > 0 such that for 0 < ε < ε̃ the solution of (25) - (27) is
defined on [0, a] and

lim
ε→0

(ω0(t, µ̄, ν̄, ε), ω(t, µ̄, ν̄, ε)) = (ω0(t, µ̄, ν̄), ω(t, µ̄, ν̄)) (28)

uniformly on [0, a]. We prove that for 0 < ε < ε̃ we have

λ̄(t) < ω0(t, µ̄, ν̄, ε), η̄(t) < ω(t, µ̄, ν̄, ε) (29)

where t ∈ [0, a].
It is clear that there is t̃ ∈ (0, a] such that inequalities (29) are satisfied on [0, t̃).

Suppose by contradiction that estimates (29) are not satisfied on [0, a]. Then there
is t ∈ (0, a] such that

λ̄(τ) < ω0(τ, µ̄, ν̄, ε) and η̄(τ) < ω(τ, µ̄, ν̄, ε) for τ ∈ [0, t)

and
λ̄(t) = ω0(t, µ̄, ν̄, ε) or η̄(t) = ω(t, µ̄, ν̄, ε).

Suppose that η̄(t) = ω(t, µ̄, ν̄, ε). Then we have

D−η̄(t) ≥ ω′(t, µ̄, ν̄, ε). (30)

There are (t̄, x) ∈ E, t̄ ≤ t, and j ∈ {1, . . . , n} such that η̄(t) = |ūj(t̄, x)|. Suppose
that t̄ < t. Then D−η̄(t) = 0 which contradicts (30). If t̄ = t then we have (i)
η̄(t) = ūj(t, x) or (ii) η̄(t) = −ūj(t, x). Let us consider the first case. Then we
have

∂xi
ūj(t, x) = 0 for i ∈ I0[t, x], (31)

∂xi
ūj(t, x) ≤ 0 for i ∈ I−[t, x], (32)

∂xi
ūj(t, x) ≥ 0 for i ∈ I+[t, x]. (33)

Let us consider the function γ : [0, t] → Rn, γ = (γ1, . . . , γn), defined as follows:

γi(τ) = xi for i ∈ I0[t, x],
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γi(τ) = −bi + Miτ for i ∈ I−[t, x],

γi(τ) = bi − Miτ for i ∈ I+[t, x].

Set ξ(τ) = ūj(τ, γ(τ)) for τ ∈ [0, t]. Then we have ξ(τ) ≤ η̄(τ) for τ ∈ [0, t) and
ξ(t) = η̄(t). This gives

D−η̄(t) ≤ ξ′(t)

and
ξ′(t) = ∂tūj(t, x) + ∑

i∈I−[t,x]

Mi∂xi
ūj(t, x)− ∑

i∈I+[t,x]

Mi∂xi
ūj(t, x).

Set
Ū(t, x) =

(
t, x, z̄(t,x), z̄ϕ(t,x), ū(t, x)

)
.

It follows from (13) that

ξ′(t) = ∂xj
f (Ū(t, x)) + ∂v f (Ū(t, x))(uj)(t,x)

+
n

∑
i=1

∂w f (Ū(t, x))(ui)ϕ(t,x)∂xj
φi(t, x) +

n

∑
i=1

∂qi
f (Ū(t, x))∂xi

ūj(t, x)

+ ∑
i∈I−[t,x]

Mi∂xi
ūj(t, x)− ∑

i∈I+[t,x]

Mi∂xi
ūj(t, x)

It follows from condition 1) - 4) Assumption H[ f , ̺] and from (31) - (33) that

D−η̄(t) ≤ ξ′(t) < ̺(t, λ̄(t), η̄(t)) + A0(1 + Q)η̄(t) + ε = ω′(t, µ̄, ν̄, ε)

which contradicts (30). The case (ii) can be treated in a similar way.
We can use the same reasoning for the relation λ̄(t) = ω0(t, µ̄, ν̄, ε).
From (29) we obtain in the limit, letting ε tend to zero, inequalities (24). This

completes the proof.

Lemma 3.2. If Assumptions H[ f , σ] and H[Th] are satisfied then there exists exactly
one solution (zh, uh) : E0.h ∪ Eh → R

1+n, uh = (uh.1, . . . , uh.n), of the Cauchy problem
(12) - (14) and

‖zh‖h.t ≤ ω0(t, µ̄, ν̄), [|uh|]h.t ≤ ω(t, µ̄, ν̄) (34)

where (ω0(t, µ̄, ν̄), ω(t, µ̄, ν̄)) is the maximal solution of (15) - (17) with (µ, ν) = (µ̄, ν̄).

Proof. It is clear that there is ε̃ > 0 such that the solution (zh, uh) of (12) -
(14) is defined on (E0.h ∪ Eh)∩ ([−b0, ε̃]×R

n). Suppose that (zh, uh) is defined on
(E0.h ∪Eh)∩ ([−b0, ã)×R

n), ã > 0, and it is non continuable. For ε > 0 we denote
by (ω0(·, µ̄, ν̄, ε), ω(·, µ̄, ν̄, ε)) the maximal solution of (15) - (17). There is ε0 > 0
such that for 0 < ε < ε0 the functions (ω0(·, µ̄, ν̄, ε), ω(·, µ̄, ν̄, ε)) are defined on
[0, ã) and condition (28) is satisfied. Set

ξh(t) = ‖zh‖h.t, χh(t) = [|uh |]h.t, t ∈ [0, ã).

We prove that

ξh(t) < ω0(t, µ̄, ν̄, ε) and χh(t) < ω(t, µ̄, ν̄, ε) (35)
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where t ∈ [0, ã). It is clear that there is t̃ > 0 such that estimates (35) are satisfied
on [0, t̃). Suppose by contradiction that (35) fails to be true on [0, ã). Then there is
t ∈ (0, ã) such that

ξh(τ) < ω0(τ, µ̄, ν̄, ε) and χh(τ) < ω(τ, µ̄, ν̄, ε) for τ ∈ (0, t)

and
ξh(t) = ω0(t, µ̄, ν̄, ε) or χh(t) = ω(t, µ̄, ν̄, ε).

Suppose that χh(t) = ω(t, µ̄, ν̄, ε). Then we have

D−χh(t) ≥ ω′(t, µ̄, ν̄, ε). (36)

There are (t̄, x(m)) ∈ Eh, t̄ ≤ t, and j ∈ {1, . . . , n} such that χh(t) = |u
(m)
h.j (t̄)|. If

t̄ < t then D−χh(t) = 0 which contradicts (36). Let us consider the case when

t̄ = t. Then we have (i) χh(t) = u
(m)
h.j (t) or χh(t) = −u

(m)
h.j (t). We consider the first

case. Then we have

D−χh(t) ≤
d

dt
u
(m)
h.j (t)

= ∂xj
f (P[zh , uh]

(m)(t)) + ∂v f (P[zh , uh]
(m)(t)) ⋆ Th(uh)[t,m]

+
n

∑
i=1

∂w f (P[zh , uh]
(m)(t))Th(uh.i)ϕ[t,m]∂xj

φ
(m)
i (t)+

n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δiu
(m)
h.j (t).

It follows from condition 3) of Assumption H[ f , ψ] and from (7), (8) that

n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δiu
(m)
h.j (t) ≤ 0.

We thus get

D−χh(t) ≤ ̺(t, ω0(t, µ̄, ν̄, ε), ω(t, µ̄, ν̄ε)) + A0(1 + Q)ω(t, µ̄, ν̄, ε) < ω′(t, µ̄, ν̄, ε),

which contradicts (36). The case (ii) can be treated in a similar way.
A similar proof remains valid for case ξh(t) = ω0(t, µ̄, ν̄, ε). The inequalities

(35) are satisfied on [0, ã). From (35) we obtain in the limit, letting ε tend to zero,
that

‖zh‖h.t ≤ ω0(t, µ̄, ν̄) and [|uh|]h.t ≤ ω(t, µ̄, ν̄) for t ∈ (0, ã). (37)

Suppose that (t, x(m)), (t̄, x(m)) ∈ Eh, t, t̄ ∈ (0, ã). It follows from Assumptions
H[Th], H[ f , ̺] and from (37) that there are ω̃h.0, ω̃h ∈ C([0, ã],R) such that

|z
(m)
h (t̄)− z

(m)
h (t)| = |

∫ t̄

t

d

dt
z
(m)
h (τ)dτ| ≤ |ω̃h.0(t̄)− ω̃h.0(t)|

and

‖u
(m)
h (t̄)− u

(m)
h (t)‖∞ = ‖

∫ t̄

t

d

dt
u
(m)
h (τ)dτ‖∞ ≤ |ω̃h(t̄)− ω̃h(t)|.

Then there are the limits

lim
t→ã
t<ã

z
(m)
h (t) = z

(m)
h (ã), lim

t→ã
t<ã

u
(m)
h (t) = u

(m)
h (ã).
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Then the solution (zh, uh) is defined on (E0.h ∪ Eh)∩ ([−b0, ã]×R
n). This contra-

dicts our assumption that (zh, uh) is defined on (E0.h ∪ Eh) ∩ ([−b0, ã),Rn) and it
is non continuable.

If ã < a then there is ε > 0 such that the solution (zh, uh) exists on (E0.h ∪ Eh)∩
([−b0, ã + ε) ×R

n) and inequalities (37) are satisfied for t ∈ [0, ã + ε). It follows
from the above considerations that (zh , uh) is defined on E0.h ∪ Eh and estimates
(34) are satisfied.

Suppose that (zh, uh) and (z̃h , ũh) are solutions of (12) - (14). Then we have

(t, x(m), Th(zh)[t,m], Th(zh)ϕ[t,m], u
(m)
h (t)) ∈ Ω[C], (38)

(t, x(m), Th(z̃h)[t,m], Th(z̃h)ϕ[t,m], ũ
(m)
h (t)) ∈ Ω[C]. (39)

Set
λ̃h(t) = ‖zh − z̃h‖h.t, ζ̃h(t) = [|uh − ũh|]h.t, t ∈ (0, a],

and ω̄h = λ̃h + ζ̃h. It follows from condition 3) of Assumption H[ f , σ] and from
(38), (39) that there is ch ≥ 1 such that the function ω̄h satisfies the differential
inequality

D−ω̄h(t) ≤ ch[ω̄h(t) + σ(t, ω̄h(t))], t ∈ (0, a],

and ω̄h(0) = 0. It follows from condition 2) of Assumption H[ f , σ] that ω̄h(t) = 0
for t ∈ (0, a]. Then (zh, uh) = (z̃h, ũh). This completes the proof of the lemma.

4 Convergence of the method of lines

Now we formulate the main result of the paper.

Theorem 4.1. Suppose that Assumptions H[ f , σ] and H[Th] are satisfied and

1) z̄ : E0 ∪ E → R is a solution of (1), (2) and z̄ is of class C2,

2) ū = ∂x z̄ and (z̄h, ūh) is the restriction of (z̄, ū) to E0.h ∪ Eh.

Then there is exactly one solution (zh , uh) : E0.h ∪ Eh → R
1+n of (12) - (14) and there is

β̃ : H → R+ such that

‖zh − z̄h‖h.t + [|uh − ūh|]h.t ≤ β̃(h) for t ∈ [0, a] (40)

and
lim

h→0[n]
β̃(h) = 0. (41)

Proof. The existence and uniqueness of a solution of (12) - (14) follows from
Lemma 3.2. Let Γh.0 : E0.h → R, Γh : Eh → R

n be defined by the relations

d

dt
z̄
(m)
h (t) = Fh [z̄h, ūh]

(m)(t) + Γ
(m)
h.0 (t),

d

dt
ū
(m)
h (t) = Gh[z̄h, ūh]

(m)(t) + Γ
(m)
h (t).
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There are γ0, γ : H → R+ such that

|Γ
(m)
h.0 (t)| ≤ γ0(h) and ‖Γ

(m)
h (t)‖∞ ≤ γ(h) on Eh

and

lim
h→0[n]

γ0(h) = 0, lim
h→0[n]

γ(h) = 0.

Let c⋆ ∈ R+ be defined by the relation

c⋆ = max {‖∂xx z̄(t, x)‖n×n : (t, x) ∈ E}

where ∂xx z̄(t, x) = [∂xixj
z̄(t, x)]i,j=1,...,n. It follows from Lemma 3.1 and 3.2 and

from Assumption H[Th] that for (t, x(m)) ∈ Eh we have

|Th(zh)[t,m](τ, s)| ≤ c̄, |Th(z̄h)[t,m](τ, s)| ≤ c̄, (τ, s) ∈ D[t, x(m)] (42)

and

|Th(zh)ϕ[t,m](τ, s)| ≤ c̄, |Th(z̄h)ϕ[t,m](τ, s)| ≤ c̄, (τ, s) ∈ D[ϕ(t, x(m))] (43)

and

‖u
(m)
h (t)‖∞ ≤ c̃, ‖ū

(m)
h (t)‖∞ ≤ c̃. (44)

For functions ζ, χ : [0, a] → R+ we define

Lh.0[ζ, χ](t) = 2A0ζ(t) + 2‖M‖χ(t) + 2c̃σ(t, ζ(t) + χ(t)) + γ0(h),

Lh[ζ, χ](t) = A0(1 + Q)χ(t) + āσ(t, ζ(t) + χ(t)) + γ(h)

where ā = 1 + c̃(1 + Q) + c⋆. Let us denote by (ωh.0(·, ε), ωh(·, ε)) the maximal
solution of the Cauchy problem

ζ′(t) = Lh.0[ζ, χ](t) + ε, χ′(t) = Lh[ζ, χ](t) + ε, (45)

ζ(0) = α0(h) + ε, χ(0) = α(h) + ε (46)

where α0, α : H → R
+ are given by (18). It follows from condition 2) of

Assumption H[ f , σ] that there is ε0 > 0 such that for 0 < ε < ε0 the functions
(ωh.0(·, ε), ω(·, ε)) are defined on [0, a] and

lim
ε→0

ωh.0(t, ε) = ωh.0(t), lim
ε→0

ωh(t, ε) = ωh(t) uniformly on [0, a]

where (ωh.0, ωh) is the maximal solution (45), (46) with ε = 0. Write

λh(t) = ‖z̄h − zh‖h.t, ξh(t) = [|ūh − uh|]h.t, t ∈ (0, a].

We prove that for each 0 < ε < ε0 we have

λh(t) < ωh.0(t, ε) and ξh(t) < ωh(t, ε) (47)
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where t ∈ [0, a]. It is clear that is t̃ ∈ (0, a] such that inequalities (47) are satisfied
on [0, t̃). Suppose by contradiction that (47) fails to be true on [0, a]. Then there is
t ∈ (0, a] such that

γh(τ) < ωh.0(τ, ε) and ξh(τ) < ωh(τ, ε) for τ ∈ [0, t)

and
λh(t) = ωh.0(t, ε) or ξh(t) < ωh(t, ε).

Suppose that λh(t) = ωh.0(t, ε). Then we have

D−λh(t) ≥ ω′
h.0(t, ε). (48)

There is (t̄, x(m)) ∈ Eh, t̄ ≤ t, such that λh(t) = |z
(m)
h (t̄) − z̄

(m)
h (t̄)|. If t̄ < t

then D−λh(t) = 0 which contradicts (48). Suppose that t̄ = t. Then we have (i)

λh(t) = z
(m)
h (t) − z̄

(m)
h (t) or (ii) λh(t) = −[z

(m)
h (t) − z̄

(m)
h (t)]. Let us consider the

case (i). It follows from condition 3) of Assumption H[ f , σ] and from (42) - (44)
that

‖∂q f (P[zh , uh]
(m)(t))− ∂q f (P[z̄h , ūh]

(m)(t))‖ ≤ σ(t, ωh.0(t, ε) + ωh(t, ε)).

Then we have

D−λh(t) ≤
d

dt
(z

(m)
h (t)− z̄

(m)
h (t)) = Fh [zh, uh]

(m)(t)− Fh[z̄h, ūh]
(m)(t) + Γ

(m)
h.0 (t)

≤ Lh.0[ωh.0(·, ε), ωh(·, ε)](t) +
n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δi(zh − z̄h)
(m)(t) + γ0(h).

It follows from conditions 3), 4) of Assumption H[ f , ψ] and from (5) , (6) that

n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δi(zh − z̄h)
(m)(t) ≤ 0.

This gives

D−λh(t) < Lh.0[ωh.0(·, ε), ωh(·, ε)](t) + ε = ω′
h.0(t, ε)

which contradicts (48). The case (ii) can be treated in a similar way. Suppose that
ξh(t) = ωh(t, ε). Then we have

D−ξh(t) ≥ ω′
h(t, ε). (49)

There are (t̄, x(m)) ∈ Eh, t̄ ≤ t and j ∈ {1, . . . , n} such that ξh(t) = |u
(m)
h.j (t̄) −

ū
(m)
h (t̄)|. Suppose that t̄ < t. Then D−ξh(t) = 0 which contradicts (49). Suppose

that t̄ = t. Then we have (i) ξh(t) = u
(m)
h.j (t) − ū

(m)
h.j (t) or (ii) ξh(t) = −[u

(m)
h.j (t) −

ū
(m)
h.j (t)]. Let us consider the case (i). We deduce from condition 3) of Assumption

H[ f , σ] and from (42) - (44) that the expressions

‖∂x f (P[zh , uh]
(m)(t))− ∂x f (P[z̄h , ūh]

(m)(t))‖,



Method of lines for nonlinear partial functional differential equations 875

‖∂v f (P[zh , uh]
(m)(t))− ∂v f (P[z̄h , ūh]

(m)(t))‖⋆ ,

‖∂w f (P[zh , uh]
(m)(t))− ∂w f (P[z̄h , ūh]

(m)(t))‖⋆

may be estimated by σ(t, ωh.0(t, ε) + ωh(t, ε)). Then we have

D−ξh(t) ≤
d

dt
(u

(m)
h.j (t)− ū

(m)
h.j (t)) = Gh.j[zh, uh]

(m)(t)− Gh.j[z̄h, ūh]
(m)(t) + Γ

(m)
h.j (t)

≤ Lh[ωh.0(·, ε), ωh(·, ε)](t) +
n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δi(uh.j − ūh.j)
(m)(t) + γ(h).

It follows from condition 3) of Assumption H[ f , ψ] and from (7), (8) that

n

∑
i=1

∂qi
f (P[zh , uh]

(m)(t))δi(uh.j − ūh.j)
(m)(t) ≤ 0.

Then we obtain

D−ξh(t) < Lh[ωh.0(·, ε), ωh(·, ε)](t) = ω′
h(t, ε)

which contradicts (49). The case (ii) can be treated in a similar way. Then inequal-
ities (47) are satisfied on [0, a]. From (47) we obtain in the limit, letting ε tend to
zero, the estimates

‖zh − z̄h‖h.t ≤ ωh.0(t), [|uh − ūh|]h.t ≤ ωh(t), t ∈ (0, a] (50)

where (ωh.0, ωh) is the maximal solution of (45), (46) with ε = 0. Let us denote by
ω̄h the maximal solution of the Cauchy problem

ω′(t) = dω(t) + (ā + 2c̃)σ(t, ω(t)) + γ0(h) + γ(h), (51)

ω(0) = α0(h) + α(h) (52)

where d = max {A0(3 + Q), 2‖M‖}. We conclude from (50) that

‖zh − z̄h‖h.t + [|uh − ūh|]h.t ≤ ω̄h(t), t ∈ (0, a].

It follows that conditions (40), (41) are satisfied for β̃(h) = ω̄h(a). This completes
the proof of the theorem.

Remark 4.1. Suppose that all the assumptions of Theorem 4.1 are satisfied with σ(t, p) =
Lp, (t, p) ∈ [0, a] ∈ R+, where L ∈ R+ Then we have the following error estimate

||zh − z̄h||h.t + [|uh − ūh|]h.t ≤ ω̃h(t), t ∈ (0, a]

where

ω̃h(t) = (α0(h) + α(h))eL̃t +
γ0(h) + γ(h)

L̃
(eL̃t − 1)

and L̃ = d + (ā + 2c̃)L. The above inequality is obtained by solving problem (51), (52)
with σ(t, p) = Lp.

Remark 4.2. It is assumed in [11] that the right hand sides of functional differential
equations satisfy global estimates of Perron type. It follows from Theorem 4.1 that local
estimates are sufficient for the convergence of the method of lines.
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5 Numerical Examples

Example 5.1. Put n = 2 and

E = {(t, x, y) ∈ R
3 : t ∈ [0, 1], |x| ≤ 2 − t, |y| ≤ 2 − t},

E0 = {0} × [−2, 2]× [−2, 2].

Consider the differential integral equation

∂tz(t, x, y) = −
1

2
arctan

[
x∂xz(t, x, y) + y∂yz(t, x, y)

]
+

1

2
arctan

[
t(x − y)z(t, x, y)

]

(53)

+t
∫ x

0
z(t, s, y)ds + t

∫ y

0
z(t, x, s)ds + f (t, x, y),

with the initial condition

z(0, x, y) = 1 for (x, y) ∈ [−2, 2]× [−2, 2] (54)

where
f (t, x, y) = e−ty − etx + (x − y)et(x−y).

The solution of the above problem is known, it is z̄(t, x, y) = et(x−y). Let
us denote by (z̃h, z̃h.x, z̃h.y) approximate solutions of ordinary functional differ-
ential equations corresponding to (53), (54). They are obtained by using the ex-

plicit Euler difference method. Nodal points on [0, 1] are obtained by t(r) = rh0,
r = 0, 1, . . . , N0.

Set

ε
(r)
h = max{|(z̄h − z̃h)(t

(i), x(m1), y(m2))| : (t(i), x(m1), y(m2)) ∈ E, 0 ≤ i ≤ r} (55)

and

ε
(r)
h.x = max{|(∂x z̄h.x − z̃h)(t

(i), x(m1), y(m2))| : (t(i), x(m1), y(m2)) ∈ E, 0 ≤ i ≤ r},
(56)

ε
(r)
h.y = max{|(∂y z̄h − z̃h.y)(t

(i), x(m1), y(m2))| : (t(i), x(m1), y(m2)) ∈ E, 0 ≤ i ≤ r}

(57)
where 0 ≤ r ≤ N0. Let us denote by ẑh an approximate solution of (53), (54)
which is obtained by using the Lax difference scheme. Set

ε̂
(r)
h = max{|(z̄h − ẑh)(t

(i), x(m1), y(m2))| : (t(i), x(m1), y(m2)) ∈ E, 0 ≤ i ≤ r} (58)

where 0 ≤ r ≤ N0. In the Table 1 we give experimental values of the errors
(εh , εh.x , εh.y) and ε̂h for h0 = 0.001, h1 = h2 = 0.05.

Note that errors of the classical difference method ε̂
(r)
h are larger then the

errors obtained by discretization of the numerical method of lines ε
(r)
h . This is

due to the fact that Lax difference scheme has the following property: we ap-
proximate partial derivatives of z with respect to spatial variables by difference
expressions which are calculated by using previous values of the approximate
solutions. In our approach we approximate the partial derivatives ∂xz and ∂yz by
using difference equations which are generated by the original problem.
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Table 1

t(r) ε
(r)
h ε

(r)
h.x ε

(r)
h.y ε̂

(r)
h

0.5 0.000935 0.000656 0.000609 0.143086

0.6 0.001491 0.000998 0.000865 0.184319

0.7 0.002155 0.001512 0.001218 0.228142

0.8 0.002915 0.002222 0.001668 0.272560

0.9 0.003755 0.003151 0.002213 0.315301

1.0 0.004657 0.004316 0.002849 0.354176

Example 5.2. For n = 2 we put

E = {(t, x, y) ∈ R
3 : t ∈ [0, 0.5], |x| ≤ 2.5 − 2t, |y| ≤ 2.5 − 2t},

E0 = {0} × [−2.5, 2.5]× [−2.5, 2.5].

Consider the differential equation with deviated variables

∂tz(t, x, y) = −x∂xz(t, x, y)− y∂yz(t, x, y) + cos
[

x∂xz(t, x, y)− y∂yz(t, x, y)
]

+ z(t, 0.5(x + y), 0.5(x − y)) sin z(t, 0.5x, 0.5y) + f (t, x, y), (59)

with the initial condition

z(0, x, y) = 1 for (x, y) ∈ [−2.5, 2.5]× [−2.5, 2.5] (60)

where

f (t, x, y) = xy(1 + 2t) exp {txy} − 1 − exp
{ t

4
(x2 − y2)

}
sin exp

{ t

4
xy

}
.

The solution of the above problem is z̄(t, x, y) = etxy. Let us denote by
(z̃h, z̃h.x, z̃h.y) approximate solutions of ordinary functional differential equations
corresponding to (59), (60). They are obtained by using the implicit Euler method.
Let (εh , εh.x, εh.y) be defined by (55) - (57).

Let us denote by ẑh an approximate solution of (53), (54) which is obtained
by using the Lax difference scheme. Denote by ε̂h errors of the method given by
(58). In the Table 2 we give experimental values of the above defined errors for
h0 = 0.01, h1 = h2 = 0.01.

In theorems on the convergence of explicit difference schemes for (1), (2) we
need assumptions on the mesh. They are called the (CFL) condition.

The (CFL) condition for (59) and for the Lax difference method has the form

h0 ≤ 0.1hi, i = 1, 2.

Note that the steps h0 = 0.01, h1 = h2 = 0.01 do not satisfy the above condition
and classical Lax difference scheme is not applicable.
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Table 2

t(r) ε
(r)
h ε

(r)
h.x ε

(r)
h.y ε̂

(r)
h

0.25 0.004843 0.004770 0.004637 0.296195

0.30 0.005078 0.005130 0.004961 0.417914

0.35 0.005109 0.005279 0.005082 6.239350

0.40 0.004971 0.005238 0.005019 257.9430

0.45 0.004702 0.005038 0.004807 5300.330

0.50 0.004341 0.004716 0.004483 46673.60

Remark 5.1. The result presented in the paper can be extended on weakly coupled func-
tional differential systems

∂tzi(t, x) = fi(t, x, z(t,x), zϕ(t,x), ∂xzi(t, x)), i = 1, . . . , k,

with the initial condition

z(t, x) = ψ(t, x), (t, x) ∈ E0,

where z = (z1, . . . , zk), ∂xzi = (∂x1
zi, . . . , ∂xnzi) and f = ( f1, . . . , fk) : E×C(B,Rk)×

C(B,Rk)×R
n → R

k, ψ = (ψ1, . . . , ψk) : E0 → R
k are given functions.
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dérivées partielles du premier ordre dans le cas hyperbolique de deux vari-
ables indépendantes, Ann. Polon. Math. 3, 1956, 87 - 117.

[18] M. Matusik, Differential difference inequalities related to parabolic func-
tional differential equations and applications, Opuscula Math. 30, 2010, 95
- 115.

[19] F. Shakeri, M. Dehghan, The method of lines for solution of the
m-dimensional wave equation subject to an integral conservation condi-
tions, Comput. Math. Appl. 56, 2008, 2175 - 2188.

[20] W. Schiesser, G. Griffiths, A Compendium of Partial Differential Equation
Models. Method of Lines Analysis with Matlab, Cambridge Univ. Press,
Cambridge, 2009.

[21] A. Vande Wouwer, Ph. Saucez, W. E. Schiesser, Adaptative Method of Lines,
Chapman & Hall-CRC, Roca Baton, 2001.



880 A. Szafrańska
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