
On the family of D(4)-triples

{k − 2, k + 2, 4k3 − 4k}
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Abstract

In this paper we prove that if k ≥ 3 and d are positive integers and the
set {k − 2, k + 2, 4k3 − 4k, d} has the property that the product of any two
of its distinct elements increased by 4 is a perfect square, then d = 4k or
d = 4k5 − 12k3 + 8k.

1 Introduction

Let n 6= 0 be an integer. A set of m positive integers is called a Diophantine m-
tuple with the property D(n), or simply D(n)-m-tuple, if the product of any two
of them increased by n is a perfect square.

Diophantus of Alexandria was the first to look for such sets and it was in the
case n = 1. He found a set of four positive rational numbers with the above

property
{

1
16 , 33

16 , 17
4 , 105

16

}

. However, Fermat found a first D(1)-quadruple, the

set {1, 3, 8, 120}. Euler was later able to add the fifth positive rational, 777480
8288641 ,

to Fermat’s set. There is a folklore conjecture that there does not exist a D(1)-
quintuple. Recently, Dujella [2] proved that there does not exist a D(1)-sextuple
and that there are only finitely many D(1)-quintuples. Considering congruences
modulo 8, it is easy to prove that a D(4)-m-tuple can contain at most two odd
numbers. So Dujella’s result implies that there does not exist a D(4)-8-tuple and
that there are only finitely many D(4)-septuples (see [4]). The second author
has given several improvements to this result, proving that there does not exist

Received by the editors in May 2012 - In revised form in November 2012.
Communicated by M. Van den Bergh.
2010 Mathematics Subject Classification : Primary 11D09; Secondary 11J86.
Key words and phrases : Diophantine tuples, system of Diophantine equations.

Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 777–787



778 L. Baćić – A. Filipin

a D(4)-sextuple, there are only finitely many D(4)-quintuples, and that an ir-
regular D(4)-quadruple cannot be extended to a quintuple (see [5, 6, 7, 8]). In
recent years there is a lot of work done on D(n)-m-tuples, specially in the cases
n = 1, n = −1 and n = 4. To see all details the reader can visit the webpage
http://web.math.pmf.unizg.hr/˜duje/dtuples.html. Here, we will consider only
the case n = 4.

For n = 4 it is conjectured that there does not exist a D(4)-quintuple. Ac-
tually, there is a stronger version of that conjecture (see [4, Conjecture 1]), that
if {a, b, c, d} is a D(4)-quadruple such that a < b < c < d, then d = d+ =
a + b + c + 1

2 (abc + rst) , where r, s and t are positive integers given by ab +

4 = r2, ac + 4 = s2 and bc + 4 = t2. The D(4)-quadruple {a, b, c, d}, where
d > max{a, b, c} is called a regular quadruple if d = d+. We also define d− =
a + b + c + 1

2 (abc − rst) . The set {a, b, c, d−} is also a D(4)-quadruple if d− 6= 0,
but d− < c.

Mohanty and Ramasamy [17] were the first to study the non-extendibility of
D(4)-m-tuples. They proved that the D(4)-quadruple {1, 5, 12, 96} cannot be ex-
tended to a D(4)-quintuple. Kedlaya [15] later proved that if {1, 5, 12, d} is a
D(4)-quadruple, then d = 96. There are some generalizations of this result that
support the conjecture. One was given by Dujella and Ramasamy [4] who proved
conjecture for a parametric family of D(4)-quadruples. They showed that if k
and d are positive integers and {F2k , 5F2k, 4F2k+2, d} is a D(4)-quadruple, then
d = 4L2kF4k+2, where Fk and Lk are Fibonacci and Lucas numbers. Same result
for more parametric families with Fibonacci, Lucas and Pell numbers was given
in [9]. Another generalization was given by Fujita [12], who proved that if k ≥ 3 is
an integer and {k − 2, k + 2, 4k, d} is a D(4)-quadruple, then d = 4k3 − 4k. Using
linear forms in two logarithms the second author, He and Togbe [10] considered
the extension of two-parametric family of D(4)-triples. In all those examples it
was considered the extension of D(4)-triple with smallest possible c, that is when
you fix a, b, then c is smallest such that c > max{a, b} and {a, b, c} is a D(4)-triple.

In this paper we use the following (which can be proven in the same way as
[14, Theorem 8]): if {k − 2, k + 2, c} is a D(4)-triple, then c = cν for some ν ≥ 1,
where

cν :=
4

k2 − 4

{(

k +
√

k2 − 4

2

)2ν+1

+

(

k −
√

k2 − 4

2

)2ν+1

− k

}

. (1.1)

It is easy to see that c1 = 4k, c2 = 4k3 − 4k and c3 = 4k5 − 12k3 + 8k.
In this paper we will prove the following result.

Theorem 1.1. Let k ≥ 3 and d be positive integers such that the set {k − 2, k + 2,
4k3 − 4k, d} is D(4)-quadruple. Then, d = 4k or d = 4k5 − 12k3 + 8k.

In the proof we will use already known methods in solving similar problems
on the extension of Diophantine triples. Firstly, we will transform the problem of
the extension of D(4)-triple to a quadruple to solving the system of simultaneous
pellian equations. It furthermore leads to finding intersection of binary recur-
rence sequences which can be solved using the Baker’s theory of linear forms in
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logarithms. That method can be used in general when we try to solve the prob-
lem of extendibility of D(4)-triple {a, b, c}, where a < b < c. But the problem
with that is when we have parametric family of D(4)-triples, usually the upper
bound for the parameter k that we get will be too large to reduce it using com-
puter program. We will get the better bound if we use hypergeometric method,
but it usually works only when b and c are not too close, which is not case here.
So, one solution for that is to use some improvement on lower bound for linear
forms in three logarithms as it was used by Bugeaud, Dujella and Mignotte in [1].
They proved that if k ≥ 2 is an integer and {k − 1, k + 1, 16k3 − 4k, d} is a D(1)-
quadruple, then d = 4k or d = 64k5 − 48k3 + 8k. In particular, Theorem 1.1 for
k even is direct consequence of the main result of [1]. But we will get even bet-
ter bound for the parameter k using linear forms in two logarithms introduced
in [13], which can be used here even the number c is not the smallest possible,
similarly as it was done in [11]. After we get the satisfactory upper bound for the
parameter k, we will solve the remaining cases using Baker-Davenport reduction.

2 Preliminaries

Let {a, b, c} be a D(4)-triple such that a < b < c. Furthermore, let r, s and t be
positive integers defined by ab + 4 = r2, ac + 4 = s2 and bc + 4 = t2. In order to
extend {a, b, c} to a D(4)-quadruple {a, b, c, d}, we have to solve the system

ad + 4 = x2, bd + 4 = y2, cd + 4 = z2. (2.1)

with positive integers x, y, z. Eliminating d from (2.1), we get the following system
of pellian equations

az2 − cx2 = 4(a − c), (2.2)

bz2 − cy2 = 4(b − c). (2.3)

By [6, Lemma 1], all solutions of (2.2) are given by z = v
(i)
m , where

v
(i)
0 = z

(i)
0 , v

(i)
1 =

1

2

(

sz
(i)
0 + cx

(i)
0

)

, v
(i)
m+2 = sv

(i)
m+1 − v

(i)
m , (2.4)

and |z(i)0 | <
√

c
√

c√
a

. Similarly, all solutions of (2.3) are given by z = w
(j)
n , where

w
(j)
0 = z

(j)
1 , w

(j)
1 =

1

2

(

tz
(j)
1 + cy

(j)
1

)

, w
(j)
n+2 = tw

(j)
n+1 − w

(j)
n (2.5)

and |z(j)
1 | <

√

c
√

c√
b

.

The initial terms z
(i)
0 and z

(j)
1 are almost completely determined in the follow-

ing lemma (see [6, Lemma 9]).



780 L. Baćić – A. Filipin

Lemma 2.1. (i) If the equation v2m = w2n has a solution, then z0 = z1. Moreover,

|z0| = 2 or |z0| = 1
2(cr − st) or |z0| < 1.608a

−5
14 c

9
14 .

(ii) If the equation v2m+1 = w2n has a solution, then |z0| = t, |z1| = 1
2(cr − st),

z0z1 < 0.

(iii) If the equation v2m = w2n+1 has a solution, then |z1| = s, |z0| = 1
2(cr − st),

z0z1 < 0.

(iv) If the equation v2m+1 = w2n+1 has a solution, then |z0| = t, |z1| = s, z0z1 > 0.

We have omitted the superscripts (i) and (j) here, and we will continue to
do so. Also, we will assume that k > 106, which will not be a problem because
at the end we will check what is happening for smaller k. In our case, we have
a = k − 2, b = k + 2, c = 4k3 − 4k, r = k, s = 2k2 − 2k − 2 and t = 2k2 + 2k − 2.

Therefore, 1
2(cr − st) = 4k2 − 2, and we can easily check that |z0| <

√

c
√

c√
a

<

k2

√

8
√

k√
k−2

< 4k2 − 2 and |z1| <
√

c
√

c√
b
< k2

√

8
√

k√
k+2

< 4k2 − 2. From the proof of

[6, Lemma 9] , the third possibility in (i) appears only if there is a positive integer
d0 = (z2

0 − 4)/c, d0 < c such that c ≥ 0.036d3.5
0 a2.5. Then by [6, Proposition 1]

{a, b, d0, c} is an irregular D(4)-quadruple. But this is not possible in our case,
since d0 = c1 = 4k and the quadruple {k − 2, k + 2, 4k, 4k3 − 4k} is regular.

Hence, the only possibilities which may occur in our case are (i) with |z0| = 2,
whenx0 = y1 = 2 and (iv) in which case x0 = y1 = r = k.

Now the equation vm = wn can be in standard way transformed into a logarith-
mic inequality.

Let us denote

α1 :=
s +

√
ac

2
, α2 :=

t +
√

bc

2
,

α3 :=

√
b(
√

c ±√
a)√

a(
√

c ±
√

b)
, α4 :=

√
b(k

√
c ± t

√
a)√

a(k
√

c ± s
√

b)
.

Lemma 2.2. Let k ≥ 3 be an integer.

(i) If vm = wn has a solution with m ≡ n ≡ 0 (mod 2), m ≥ 2 and z0 = z1 = ±2,
then we have

0 < m log α1 − n log α2 + log α3 < 4.05α
−2m
1 < 1.1k2

α
−2m
1 . (2.6)

(ii) If vm = wn has a solution with m ≡ n ≡ 1 (mod 2), m ≥ 1 and z0 = ±t, z1 =
±s (z0z1 > 0), then we have

0 < m log α1 − n log α2 + log α4 < 1.1k2
α
−2m
1 . (2.7)
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Proof.

(i) By (2.4), (2.5) and z0 = z1 = ±2, we have

vm =
1√

k − 2

{

(√
c ±

√
k − 2

)

(

s +
√

(k − 2)c

2

)m

−

(√
c ∓

√
k − 2

)

(

s −
√

(k − 2)c

2

)m}

,

wn =
1√

k + 2

{

(√
c ±

√
k + 2

)

(

t +
√

(k + 2)c

2

)n

−

(√
c ∓

√
k + 2

)

(

t −
√

(k + 2)c

2

)n}

.

Let us define

P :=
2(
√

c ±
√

k − 2)√
k − 2

(

s +
√

(k − 2)c

2

)m

,

Q :=
2(
√

c ±
√

k + 2)√
k + 2

(

t +
√

(k + 2)c

2

)n

.

It follows from vm = wn that

P − 4(c − k + 2)

k − 2
P−1 = Q − 4(c − k − 2)

k + 2
Q−1. (2.8)

Since P > 0, Q > 0 and

P − Q =
4(c − k + 2)

k − 2
P−1 − 4(c − k − 2)

k + 2
Q−1

>
4(c − k + 2)

k − 2
(P−1 − Q−1) =

4(c − k + 2)

k − 2
(Q − P)P−1Q−1,

we have P > Q.
Furthermore, since m ≥ 2, we have

P ≥ 2(
√

c −
√

k − 2)√
k − 2

(

s +
√

(k − 2)c

2

)2

> 2c.

Then, we conclude
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P − Q

P
=

4(c − k + 2)

k − 2
P−2 − 4(c − k − 2)

k + 2
P−1Q−1

<
4(c − k + 2)

k − 2
P−2

<
4(c − k + 2)

k − 2
· 1

4c2
< 0.011.

Hence, we have

0 < log
P

Q
= log

(

Q

P

)−1

= − log
Q

P
= − log

(

1 − P − Q

P

)

<
4(c − k + 2)

k − 2
P−2 +

(

4(c − k + 2)

k − 2

)2

P−4

=

(

1 +
4(c − k + 2)

k − 2
P−2

)

4(c − k + 2)

k − 2
P−2

≤
(

1 +
4(c − k + 2)

k − 2
P−2

)

4(c − k + 2)

k − 2

( √
k − 2√

c −
√

k − 2

)2(

s +
√

(k − 2)c

2

)−2m

=

(

1 +
4(c − k + 2)

k − 2
P−2

)

4(c − k + 2)

(
√

c −
√

k − 2)2

(

s +
√

(k − 2)c

2

)−2m

< 1.011 · 4 ·
(

s +
√

(k − 2)c

2

)−2m

< 4.05

(

s +
√

(k − 2)c

2

)−2m

.

The statement (ii) can be proved in the same way.

Lemma 2.3. Let k > 106 be an integer. Assume that vm = wn with n ≥ 2. Then

0 < m − n <
1.01n

k log k
.

Proof. Firstly, it is easy to see that if n ≥ 2, then m > n. It follows from v2 < w2

in all cases and the sequence (wn) grows more quickly. Then from Lemma 2.2
and α3, α4 > 1, we can conclude

m log α1 − n log α2 < 1.1k2
α
−6
1 < 1.1k−10.

Hence, we have

m − n

n
<

log α2 − log α1

log α1
+

1.1

nk10 log α1
=

log
(

α2
α1

)

log α1
+

1.1

nk10 log α1

<

log
(

2t
2s−1

)

log α1
+

0.28

k10 log k
<

2t − 2s + 1

(2s − 1) · 2 log k
+

0.28

k10 log k

<
8k + 1

(8k2 − 8k − 10) log k
+

0.28

k10 log k
<

1.01

k log k
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since k > 106.

So if we put ∆ = m − n, we have just proved the following lemma.

Lemma 2.4. Let k > 106 be an integer. If vm = wn with n ≥ 2, then there exist a
positive integer ∆ ≥ 2 such that

m > 0.99 · ∆ · k log k.

3 Linear forms in two logarithms

In this section we will apply the following result due to Laurent, Mignotte and
Nesterenko to our linear form Λ = m log α1 − n log α2 + log α′

3, where α′
3 = α3, α4,

assuming k > 106.

Lemma 3.1. ([16, Corollary 2]) Let γ1 and γ2 be multiplicatively independent and
positive algebraic numbers, b1, b2 ∈ Z and

Λ = b1 log γ1 + b2 log γ2.

Let D := [Q(γ1, γ2) : Q], for i = 1, 2 let

hi ≥ max

{

h(γi),
| log γi|

D
,

1

D

}

,

where h(γ) is the absolute logarithmic height of γ, and

b′ ≥ |b1|
Dh2

+
|b2|
Dh1

.

If Λ 6= 0, then we have

log |Λ| ≥ −24.34 · D4

(

max

{

log b′ + 0.14,
21

D
,

1

2

})2

h1h2.

So, we will now transform our linear form to Λ = m log
(

α1
α2

)

+ log(α∆

2 α′
3),

where ∆ = m − n as before. So in the notation of the previous lemma we have
D = 4, b1 = m, b2 = 1, γ1 = α1

α2
and γ2 = α∆

2 α′
3. Moreover, γ1 and γ2 are

multiplicatively independent since the relation

(

s +
√

ac

2

)i1(

t +
√

bc

2

)i2

=

(√
b(x0

√
c ± z0

√
a)√

a(y1
√

c ± z1

√
b)

)i3

implies
(

s −√
ac

2

)i1(

t −
√

bc

2

)i2

=

(√
b(x0

√
c ∓ z0

√
a)√

a(y1
√

c ∓ z1

√
b)

)i3

and by multiplying these two relations we obtain
( b(c−a)

a(c−b)

)i3 = 1 and a = b, a

contradiction.
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Now we have

h(γ1) = h

(

α1

α2

)

≤ h(α1) + h(α2) =
1

2
log α1 +

1

2
log α2 < 2.06 log k.

So, we can take h1 = 2.06 log k. Furthermore, in [5] the second author proved
for general triple {a, b, c} that h(α′

3) < 3.425 log c < 3.425 log(4k3) < 10.62 log k.
Then,

h(γ2) = h(α∆

2 α
′
3) <

∆

2
log α2 + 10.62 log k < (1.03∆ + 10.62) log k.

So, for h2 we can take h2 = (1.03∆ + 10.62) log k. That implies

b2

Dh1
=

1

8.24 log k
< 0.009

and
b′ =

m

4(1.03∆ + 10.62) log k
+ 0.009.

Next, from Lemma 2.4 we conclude

b′ >
0.99∆k

4(1.03∆ + 10.62)

and

log b′ + 0.14 > log
0.99∆k

4(1.03∆ + 10.62)
+ 0.14 >

21

D

for k > 106. Now, from Lemma 2.2 we have

2m log α1

(1.03∆ + 10.62) log k
< 24.34 · 44 · (log b′+ 0.14)2 · 8.24 log k+

log(1.1k2)

(1.03∆ + 10.62) log k

< 51344(log b′ + 0.14)2 log k.

Furthermore, log α1 > 2.05 log k yields

2m

(1.03∆ + 10.62) log k
< 25046(log b′ + 0.14)2

and
8b′ < 25046(log b′ + 0.14)2 + 0.072,

which implies b′ < 560141. Moreover,

m

4(1.03∆ + 10.62) log k
< b′ < 560141

together with Lemma 2.4 gives us

k · 0.99∆

4(1.03∆ + 10.62)
< 560141
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and using ∆ ≥ 2, k < 1.44 · 107.

Because we know what is happening for small indices (n < 2) in the equation
vm = wn, we know that the only solutions are v0 = w0 = ±2 which gives us
d = 0, v1 = w1 = 1

2(cr − st) = 4k2 − 2 which gives us d = 4k and v1 = w1 =
1
2(cr + st) = 4k4 − 8k2 + 2, which gives us d = 4k5 − 12k3 + 8k. So, we have just

proved the Theorem 1.1 for k ≥ 1.44 · 107. Let us mention that using the same
theorem with linear forms in three logarithm as Bugeaud, Dujella and Mignotte
in [1] we would get an upper bound for k, k < 3 · 108. We see that using linear
forms in two logarithms will give us slightly better bound, but it can save us a lot
of time when we do reduction using computer program.

4 The reduction method and the proof of Theorem 1.1

In the previous section we have proven Theorem 1.1 for large parameter k. There-
fore, we are left to treat the cases of small k < 1.44 · 107. To deal with the re-
maining cases we will use the Baker-Davenport reduction that will give us that
in all of the remaining cases we do not have any new extension of the triple
{k − 2, k + 2, 4k3 − 4k}.

Also from [5] we know that vm = wn implies m < 4 · 1021 in all cases. It
enables us to use the following version of Baker-Davenport lemma.

Lemma 4.1. ([3, Lemma 5a]) Assume that M is a positive integer. Let P/Q be the
convergent of the continued fraction expansion of κ such that Q > 6M and let

η = ‖µQ‖ − M · ‖κQ‖,

where ‖ · ‖ denotes the distance from the nearest integer. If η > 0, then there is no
solution of the inequality

0 < mκ − n + µ < EB−m

in integers m and n with
log (EQ/η)

log B
≤ m ≤ M.

We apply Lemma 4.1 with

κ =
log α1

log α2
, µ =

log α′
3

log α2
, E =

1.1k2

log α2
, B = α

2
1

and M = 4 · 1021, where α′
3 = α3, α4. After two steps of reduction in all cases we

get m < 2, which gives us the already known extensions of our triple to a quadru-
ple. Actually, for k > 105 we needed only one step of reduction. We have done
this in Mathematica 7 and the running time was less than 40 hours. It finishes the
proof of Theorem 1.1.
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