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Abstract

In this article we study the Darboux integrability of the polynomial dif-
ferential systems

ẋ = y − x2, ẏ = z − x, ż = −d − ax − by − cz.

This system comes from the study of a Hopf bifurcation in slow-fast sys-
tems with two slow variables and one fast variable. The tools used here for
studying the Darboux integrability can be applied to arbitrary polynomial
differential systems in R3.

1 Introduction and statement of the main results

Recently the Hopf bifurcations have been studied intensively in two dimensional
differential systems with one slow and one fast variable, see for instance [1, 5, 6,
10, 8]. Less analysis has been done of the Hopf bifurcations in slow-fast systems
in R

3 with two slow variables and one first variable, see [7, 9, 13, 14]. Guucken-
heimer in [9] reduces the study of this Hopf bifurcation to study the zero Hopf
bifurcation of the differential system

ẋ = y − x2,

ẏ = z − x,

ż = −d − ax − by − cz,

(1)
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where (x, y, z) ∈ R
3, a, b, c, d ∈ R and the dot denotes derivative with respect to

the independent variable t.

The vector field associated to (1) is

X = (y − x2)
∂

∂x
+ (z − x)

∂

∂y
− (d + ax + by + cz)

∂

∂z
.

Let U be an open subset in R3 such that R3 \ U has zero Lebesgue measure.
We say that a real function H = H(x, y, z) : U ⊂ R

3 → R non-constant in any
open subset of U is a first integral if H(x(t), y(t), z(t)) is constant on all solutions
(x(t), y(t), z(t)) of X contained in U, i.e. X H|U = 0. The existence of a first inte-

gral for a differential system in R3 allows to reduce its study in one dimension.
This is the main reason to look for first integrals.

One of the more classical problems in the qualitative theory of differential
equations depending on parameters is to characterize the existence or not of first
integrals in function of these parameters. This is a very difficult problem and not
many results can be found in the literature. One of the best tools to look for first
integrals is the Darboux theory of integrability.

Our objective is to study the Darboux integrability of system (1). Probably the
more interesting novelty of this paper is not the characterization of the Darboux
integrability of system (1), but the method for reaching this result, which can be
applied to other polynomial differential systems in R3.

Now we shall introduce the basic notions of the Darboux theory of integrabil-
ity restricted to system (1). Let C[x, y, z] be the ring of polynomials in the variables
x, y, z with coefficients in C. We say that f ∈ C[x, y, z] is a Darboux polynomial of
the vector field X if there exists a polynomial K ∈ C[x, y, z] such that X f = K f ,
i.e.

(y − x2)
∂h

∂x
+ (z − x)

∂h

∂y
− (d + ax + by + cz)

∂h

∂z
= Kh. (2)

The polynomial K = K(x, y, z) is called the cofactor of f . It is easy to show that
the cofactor of a Darboux polynomial of the vector field X has degree at most
one, i.e. K = k0 + k1x + k2y + k3z with ki ∈ C for i = 0, . . . , 3. Note that we look
for complex Darboux polynomials in real differential systems. The reason is that
frequently the complex structure forces the existence of real first integrals, and
sometimes if we only work with the real Darboux polynomials, we cannot detect
all the real first integrals.

If f ∈ C[x, y, z] is a Darboux polynomial of the vector field X then f (x, y, z) =
0 is an invariant algebraic surface for the differential system (1), i.e. if an orbit has a
point in this surface then the whole orbit is contained in it. Note that a Darboux
polynomial with zero cofactor is a polynomial first integral.

The Darboux polynomials for system (1) with non–zero cofactor are charac-
terized in the next result.

Theorem 1. System (1) has an irreducible Darboux polynomial with non–zero cofactor
if and only if a = b = 0 and c 6= 0. In this case the irreducible Darboux polynomial is
cz + d with cofactor −c.
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Theorem 1 is proved in section 3.

Let I(x,y,z) be the maximal interval of definition of the solution of system (1)

such that at time zero pass through the point (x, y, z). We say that a real function
I = I(x, y, z, t) : U × I(x,y,z) → R non-constant in any open subset of U is an

invariant if it is constant on every solution (x(t), y(t), z(t)) contained in U, i.e. if

dI

dt

∣

∣

∣

∣

U

= X I +
∂I

∂t

∣

∣

∣

∣

U

= 0.

Corollary 2. System (1) with a = b = 0 and c 6= 0 has the invariant I = (cz + d)ect.

The proof of Corollary 2 is immediate from Theorem 1 and the definition of
invariant.

To know and invariant of a differential system is important because it allows
to compute either the α-limits, or the ω-limits of the orbits of the system. More
precisely, if c > 0 then when t → α the orbit of system (1) having maximal interval
of definition (α, ω), under the assumption of Corollary 2, tends to the invariant
plane cz + d = 0, and studying the dynamics on this invariant plane we can
determine the α-limit sets. A similar study can be done if c < 0 for the ω-limit
sets. For a definition of α- or ω-limit sets see [4].

An exponential factor F(x, y, z) of the vector field X is an exponential function
of the form exp(g/h) with g and h coprime polynomials in C[x, y, z] and satis-
fying X F = LF for some L ∈ C[x, y, z] with degree one. The exponential fac-
tors appear when some Darboux polynomial has multiplicity larger than one, or
when the multiplicity of the plane at infinity is larger than one, for more details
see [2, 12].

A first integral of system (1) is called of Darboux type if it is a first integral of
the form

f λ1
1 · · · f

λp
p F

µ1
1 · · · F

µq
q

where f1, . . . , fp are Darboux polynomials and F1, . . . , Fq are exponential factors.

The next theorem is the main result of the paper, and it characterizes the first
integrals of Darboux type for system (1).

Theorem 3. System (1) has Darboux first integrals if and only if b = d = 0 and
a + c = 0. Moreover, when system (1) has Darboux first integrals these are functions of
Darboux type in the variable ay − z.

Theorem 3 is proved in section 4. In section 2 we introduce some auxiliary
results that will be used all through the paper.

2 Auxiliary results

In the rest of this paper we will use the following well known result of the Dar-
boux theory of integrability, see for instance Chapter 8 of [4].
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Theorem 4 (Darboux theory of integrability). Suppose that a polynomial vector field
X defined in Rn of degree m admits p Darboux polynomials fi with cofactors Ki for
i = 1, . . . , p and q exponential factors Fj = exp(gj/hj) with cofactors Lj for
j = 1, . . . , q. If there exist λi, µj ∈ C not all zero such that

p

∑
i=1

λiKi +
q

∑
j=1

µjLj = 0, (3)

then the following real (multivalued) function of Darboux type

f λ1
1 · · · f

λp
p F

µ1

1 · · · F
µq
q ,

substituting f λi
i by | fi|λi if λi ∈ R, is a first integral of the vector field X .

For a proof of the next result see [11, 12].

Proposition 5. The following statements hold.

(a) If eg/h is an exponential factor for the polynomial differential system (1) and h is
not a constant polynomial, then h = 0 is an invariant algebraic surface.

(b) Eventually eg can be an exponential factor, coming from the multiplicity of the
infinite invariant plane.

The proof of the next result can be found in Chapter 8 of [4].

Lemma 6. Let f be a polynomial and f = ∏
s
j=1 f

αj

j its decomposition into irreducible

factors in C[x, y, z]. Then f is a Darboux polynomial of system (1) if and only if all the f j

are Darboux polynomials of system (1). Moreover if K and Kj are the cofactors of f and
f j, then K = ∑

s
j=1 αjKj.

We note that in view of Lemma 6 to study the Darboux polynomials of system
(1) it is enough to study the irreducible ones.

To prove Theorem 3 we also need one auxiliary result proved in [3]. We re-
call that a generalized rational function is a function which is the quotient of two
analytic functions. In particular rational first integrals and analytic first integrals
are particular cases of generalized rational first integrals. Clearly a Darboux type
function is a generalized rational function.

Theorem 7. Assume that the differential system (1) has p as a singular point and let
λ1, λ2, λ3 be the eigenvalues of the linear part of system (1) at p. Then the number
of functionally independent generalized rational integrals of system (1) is at most the
dimension of the minimal vector subspace of R3 containing the set

{

(k1, k2, k3) ∈ Z
3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) 6= (0, 0, 0)

}

.
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3 Proof of Theorem 1

To prove Theorem 1 we state and prove some auxiliary results. We denote by N

the set of positive integers.

Lemma 8. If h is a Darboux polynomial of system (1) with non–zero cofactor K then
K = k0 − mx for some k0 ∈ C and m ∈ N ∪ {0}.

Proof. Let h be a Darboux polynomial of system (1) with non–zero cofactor K then
K = k0 + k1x + k2y + k3z for some k0, k1, k2, k3 ∈ C.

Let n be the degree of h. We write h in sum of its homogeneous parts as
h = ∑

n
i=1 hi where each hi is a homogenous polynomial of degree i. Without loss

of generality we can assume that hn 6= 0 and n ≥ 1.

Computing the terms of degree n + 1 in (2) we get that

−x2 ∂hn

∂x
= (k1x + k2y + k3z)hn.

Solving it we get

hn = Cn(y, z)x−k1 exp
(k2y

x
+

k3z

x

)

,

where Cn is any function in the variables y, z. Since hn must be a homogeneous
polynomial we must have k1 = −m with m ∈ N∪{0}, k2 = k3 = 0 and Cn(y, z) ∈
C[y, z] \ {0}. This concludes the proof of the lemma.

Proposition 9. System (1) with either a2 + b2 6= 0, or a = b = c = 0 has no Darboux
polynomials with non–zero cofactor.

Proof. For simplifying the computations we introduce the weight change of vari-
ables

x = µ−1X, y = µ−2Y, z = µ−1Z, t = µT,

with µ ∈ R \ {0}. Then system (1) becomes

X′ = Y − X2,

Y′ = µ2(Z − X),

Z′ = −bY − µ(aX + cZ)− µ2d,

where the prime denotes derivative with respect to the variable T.

A polynomial H(X, Y, Z) is said to be weight-homogeneous of degree r ∈ N

with respect to the weight exponent s = (s1, s2, s3) for all µ ∈ R \ {0} if we have
H(µs1 X, µs2Y, µs3 Z) = µr H(X, Y, Z).

Let h(x, y, z) be a Darboux polynomial of system (1) with cofactor k(x, y, z).
Without loss of generality, we can assume that k(x, y, z) = k0 + k1x + k2y + k3z.
In view of Lemma 8 we get k2 = k3 = 0 and k1 = −m with m ∈ N ∪ {0}.
Set H(X, Y, Z) = µnh(µ−1X, µ−2Y, µ−1Z) = ∑

n
i=0 µi Hi(X, Y, Z) where Hi is the

weight-homogeneous part with weight degree n − i of H and n is the weight
degree of H with weight exponent s = (−1,−2,−1). We also set K(X, Y, Z) =
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µk(µ−1X, µ−2Y, µ−1Z) = µ(k0 − mµ−1X) = µk0 − mX. From the definition of a
Darboux polynomial, we have

(y − x2)
n

∑
i=0

µi ∂Hi

∂x
+ µ2(z − x)

n

∑
i=0

µi ∂Hi

∂y
− (by + µ(ax + cz) + µ2d)

n

∑
i=0

µi ∂Hi

∂z

= (µk0 − mx)
n

∑
i=0

µi Hi,

(4)

where we still use x, y, z instead of X, Y, Z.

Equating in (4) the terms with µi for i = 0, 1, . . . , n + 2 we get

L[H0] = −mxH0,

L[H1] = −mxH1 + k0H0 + (ax + cz)
∂H0

∂z
,

L[H2] = −mxH2 + k0H1 + (ax + cz)
∂H1

∂z
− (z − x)

∂H0

∂y
+ d

∂H0

∂z
,

L[Hj] = −mxHj + k0Hj−1 + (ax + cz)
∂Hj−1

∂z
− (z − x)

∂Hj−2

∂y
+ d

∂Hj−2

∂z
,

(5)

for j = 3, . . . , n + 2, where Hj = 0 for j > n, and L is the linear partial differential
operator of the form

L = (y − x2)
∂

∂x
− by

∂

∂z
.

Consider the first equation of (5), that is L[H0] = −mxH0, where H0 is a weight-
homogeneous polynomial of degree n.

By direct computation we get

H0 = (x2 − y)m/2 f0(y, v),

where f0(y, v) is a differentiable function in y and v = z + b
√

y arctanh(x/
√

y).
We consider different cases.

Case 1: b 6= 0. In this case since H0 is a weight-homogeneous polynomial we must
have f0 = f0(y) being f0 a homogeneous polynomial, i.e. f0(y) = C0yl for some
C0 ∈ C \ {0}. Thus,

H0 = C0(x
2 − y)m/2yl, C0 ∈ C \ {0},

and the weight degree of H0 is n = m + 2l.

From the second equation of (5) we get

L[H1] = −mxH1 + k0H0.

Solving it we obtain

H1 = C0k0(x
2 − y)m/2yl−1/2arctanh

( x√
y

)

+ (x2 − y)m/2 f1(y, v),
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where f1(y, v) is a differentiable function. Again since H1 is a weight-homogenous
polynomial we must have C0k0 = 0 (which yields k0 = 0 because C0 6= 0), and f1

must be a function of y but since the weight-degree of H1 is n − 1 = m + 2l − 1
we get that f1 = 0 and thus H1 = 0. In short, k0 = 0 and H1 = 0.

The third equation in (5) is

L[H2] = −mxH2 − (z − x)
∂H0

∂y
.

Solving it we get

H2 = C0m(x2 − y)m/2−1yl−1((b − 2)y + 2xz)

+ C0(x
2 − y)m/2yl−3/2

(

b(m + 4l)
√

y arctanh2
( x√

y

)

+ ((m + 4l)z − 4l
√

y) log(x −√
y) + b(m + 4l)

√
y arctanh

( x√
y

)

log
x −√

y

x +
√

y

− ((m + 4l)z + 4l
√

y) log(x +
√

y)

)

+ (x2 − y)m/2 f2(y, v),

where f2(y, v) is a differentiable function. Since H2 is a weight-homogenous poly-
nomial of degree n − 2 = m + 2l − 2, we must have f2 = f2(y) and 4l = m + 4l =
0. In short, l = m = 0 and k0 = 0, which yields K = 0, in contradiction with the
fact that h is a Darboux polynomial with non–zero cofactor. Hence if b 6= 0 there
are no Darboux polynomials with non–zero cofactor.

Case 2: b = 0. In this case we consider two subcases.

Subcase 2.1: a 6= 0. The first equation in (5), i.e. L[H0] = −mxH0, together with
the fact that H0 is a homogeneous polynomial with weight-degree n yields

H0 = (x2 − y)m/2 f0(y, z),

where g0 ∈ C[y, z] and has weight-degree n − m. The second equation in (5)
yields

L[H1] = −mxH1 + k0H0 + (ax + cz)
∂H0

∂z
.

Solving it we get

H1 = (x2 − y)m/2

(

a

2
log(x2 − y2)

∂ f0

∂z
− y−1/2

(

k0 f0 + cz
∂ f0

∂z

)

arctanh
(

x/
√

y)
)

+ (x2 − y)m/2 f1(y, z),

where f1 is a smooth function in the variables y, z. Taking into account that H1

is a weight-homogeneous polynomial with weight-degree n − 1 and that a 6= 0
we get ∂ f0/∂z = 0 and k0 = 0. Hence H0 = C0(x

2 − y)m/2yl with C0 ∈ C \ {0},
n = m + 2l and H1 = (x2 − y)m/2 f1(y, z) with f1 ∈ C[y, z] of weight-degree
n − m − 1.
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The third equation in (5) yields

L[H2] = −mxH2 + (ax + cz)
∂H1

∂z
− (z − x)

∂H0

∂y
.

Solving it we get

H2 =
1

4
(x2 − y)m/2−1

(

yl−1m(xz − y)− (x2 − y)

(

2
(

lyl + ay
∂ f1

∂z

)

log(x2 − y)

− zy−1/2
(

(m + 4l)yl − 4cy
∂ f1

∂z

)

arctanh
( x√

y

)

))

+ (x2 − y)m/2 f2(y, z),

where f2 is a smooth function in the variables y, z. Since H2 must be a weight-
homogeneous polynomial, we must have lyl + ay∂ f1/∂z = 0 and (m + 4l)yl −
4cy∂ f1/∂z = 0. Using that a 6= 0 we obtain f1 = −lyl−1z/a + g1(y) and am +
4(a + c)l = 0. Since f1 has weight degree n − m − 1 = 2l − 1 and y has weight-
degree 2, we must have g1 = 0. Furthermore, if a+ c = 0, then m = 0 which is not
possible because then K = 0 in contradiction with the fact that the cofactor is non-
zero. Hence, a+ c 6= 0 and l = −am/(4(a+ c)). In short, f1 = −lyl−1z/a, a+ c 6=
0, l = −am/(4(a + c)) and H2 = m(x2 − y)m/2−1yl−1(y − xz)/4 + f2(y, z) where
f2 ∈ C[y, z] is a weight-homogeneous polynomial with weight-degree n − 2.

The fourth equation in (5) yields

L[H3] = −mxH3 + (ax + cz)
∂H2

∂z
− (z − x)

∂H1

∂y
+ d

∂H1

∂z
.

Solving it we get

H3 =
1

16(a + c)2
(x2 − y)m/2−1yl−2

(

(a + c)m(2a(a + c)xy

+ (2c(a + c)− m)yz + mxz2) + (x2 − y)

(

1

2

(

m(4c + a(4 + m))z

− 4a(a + c)2y2−l ∂ f2

∂z

)

log(x2 − y) + y−1/2
(

m(2(a + c)(a(a + c) + 2d)y

+ (4(a + c)− cm)z2) + 4c(a + c)2y2−lz
∂ f2

∂z

)

arctanh
( x√

y

)

)

+ (x2 − y)m/2 f3(y, z),

where f3 is a function in the variables y, z. Since H3 must be a weight-homogeneous
polynomial, we have

m(4c + a(4 + m))z − 4a(a + c)2y2−l ∂ f2

∂z
= 0,

m(2(a + c)(a(a + c) + 2d)y + (4(a + c)− cm)z2) + 4c(a + c)2y2−lz
∂ f2

∂z
= 0.

(6)

¿From the first identity in (6) we get

f2(y, z) =
m(4c + a(m + 4))

8a(a + c)2
yl−2z2 + g2(y).
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Substituting it in the second identity in (6) we obtain

2(a + c)m

a
(a(a(a + c) + 2d)y + 2(a + c)z2) = 0.

Since a(a + c) 6= 0 we must have m = 0. In short, k0 = m = 0, which yields
K = 0, in contradiction with the fact that h is a Darboux polynomial with non–
zero cofactor. Hence if b = 0 and a 6= 0 there are no Darboux polynomials with
non–zero cofactor.

Subcase 2.2: a = 0. By hypothesis we also have c = 0. Proceeding as in Subcase
2.1 we get that H0 = (x2 − y)m/2 f0(y, z) where f0 ∈ C[y, z] \ {0} is a weight-
homogeneous polynomial of weight degree n − m. The second equation in (5)
becomes

L[H1] = −mxH1 + k0H0.

Solving it we get

H1 = (x2 − y)m/2y−1/2k0 f0(y, z) arctanh
( x√

y

)

+ (x2 − y)m/2 f1(y, z),

where f1 is a function in y, z. Since H1 is a weight-homogeneous polynomial of
weight degree n − 1, we must have k0 f0 = 0 and f1 be a weight-homogeneous
polynomial of weight degree n − m − 1. Since f0 6= 0 we must have k0 = 0 and
H1 = (x2 − y)m/2 f1(y, v).

From the the third equation in (5) we get

L[H2] = −mxH2 − (z − x)
∂H0

∂y
+ d

∂H0

∂z
.

Solving it we obtain

H2 =
1

4
(x2 − y)m/2−1

(

my−1(−y + xz) f0(y, z)− 2(x2 − y) log(x2 − y)
∂ f0

∂y

− (x2 − y)

y3/2

(

mz f0 − 4dy
∂ f0

∂z
+ 4yz

∂ f0

∂y

)

arctanh
( x√

y

)

)

+ (x2 − y)m/2 f2(y, z),

where f2 is a function in y, z. Since H2 is a weight-homogeneous polynomial
of weight degree n − 2, we must have ∂ f0/∂y = 0 and mz f0 − 4dy∂ f0/∂z = 0.
Since f0 6= 0 we must have m = 0. In short, k0 = m = 0 which yields K = 0, in
contradiction with the fact that h is a Darboux polynomial with non–zero cofactor.
Hence if b = a = 0 and c 6= 0 there are no Darboux polynomials with non–zero
cofactor.

In view of Proposition 9, to complete the proof of Theorem 1 we should study
the case a = b = 0 and c 6= 0 and show that it has the unique irreducible Darboux
polynomial cz + d. We introduce the change of variables u = cz+ d. Then system
(1) becomes

ẋ = y − x2,

ẏ = −d

c
+

u

c
− x,

u̇ = −cu.

(7)
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We introduce the change of variables For simplifying the computations we intro-
duce the weight change of variables

x = µ−1X, y = µ−2Y, u = µ−1U, t = µT,

with µ ∈ R \ {0}. Then system (7) becomes

X′ = Y − X2,

Y′ = −µ2X + µ2 U

c
− d

c
µ3,

U′ = −cµU,

where the prime denotes derivative with respect to the variable T. From the
definition of a Darboux polynomial, we have

(y − x2)
n

∑
i=0

µi ∂Hi

∂x
− µ2

(

x − u

c
+ µ

d

c

) n

∑
i=0

µi ∂Hi

∂y
− cµu

n

∑
i=0

µi ∂Hi

∂u

= (µk0 − mx)
n

∑
i=0

µi Hi,

(8)

where we still use x, y, u instead of X, Y, U.

Equating in (8) the terms with µi for i = 0, 1, . . . , n + 2 we get

L[H0] = −mxH0,

L[H1] = −mxH1 + k0H0 + cu
∂H0

∂u
,

L[H2] = −mxH2 + k0H1 + cu
∂H1

∂u
−

(u

c
− x

)∂H0

∂y
,

L[H3] = −mxH3 + k0H2 + cu
∂H2

∂u
−

(u

c
− x

)∂H1

∂y
+

d

c

∂H0

∂y
,

L[Hj] = −mxHj + k0Hj−1 + cu
∂Hj−1

∂u
−

(u

c
− x

)∂Hj−2

∂y
+

d

c

∂Hj−3

∂y
,

(9)

for j = 4, . . . , n + 3, where Hj = 0 for j > n and L is the linear partial differential
operator of the form

L = (y − x2)
∂

∂x
.

Consider the first equation of (9). By direct computation we get

H0 = (y − x2)m/2 f0(y, u),

where f0 ∈ C[y, u] has weight-degree n − m. The second equation in (5) gives

L[H1] = −mxH1 + k0H0 + cu
∂H0

∂u
.

Solving it and using that it has weight-degree n − 1 we get

H1 = (x2 − y)m/2y−1/2
(

k0 f0(y, u) + cu
∂ f0

∂u

)

arctanh
( x√

y

)

+ (x2 − y)m/2 f1(y, u),
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which yields f0(y, u) = u−k0/cg0(y). Moreover, k0 = −lc, g0 has weight-degree
n − m − l and H1 = (x2 − y)m/2 f1(y, u) with f1 ∈ C[y, u] and has weight-degree
n − 1.

The third equation in (5) gives

L[H2] = −mxH2 + k0H1 + cu
∂H1

∂u
−

(u

c
− x

)∂H0

∂y
.

Solving it we obtain

H2 =
(x2 − y)m/2−1ul

4c

(

my−1(ux − cy)g0(y)− 2c(x2 − y) log(x2 − y)g′0(y)

+
x2 − y

y3/2

(

− u(mg0 + 4yg′0(y)) + 4c2yu−l
(

− l f1 + u
∂ f1

∂u

))

arctanh
( x√

y

)

+ (x2 − y)m/2 f2(y, u),

where f2 ∈ C[y, u] and has weight-degree n − 2. Since H2 is a polynomial and
g0 6= 0 we must have g′0(y) = 0, i.e, g0 = C0 ∈ C \ {0}, m = 0 and f1 = C1ul .
This yields n = l. Moreover, since H1 has weight-degree n − 1 = l − 1 we must
have C1 = 0. In short, H0 = C0un, n = l, H1 = 0 and H2 = f2(y, u) with
weight-degree n − 2 = l − 2. Proceeding inductively we get that Hi = 0 for
i = 2, . . . , n. Hence the Darboux polynomial is h = C0(d+ cz)n with cofactor −cn.
The irreducible Darboux polynomial is d + cz with cofactor −c. This concludes
the proof of Theorem 1.

4 Proof of Theorem 3

We will divide the proof of Theorem 3 into different results. The first one charac-
terizes the polynomial first integrals of system (1).

Lemma 10. System (1) has a polynomial first integral if and only if b = d = 0 and
a + c = 0. In this case a polynomial first integral is ay − z.

Proof. Let h ∈ C[x, y, z] \ C be a polynomial first integral of system (1). We write
h as a polynomial in the variable x as

h =
n

∑
i=0

hi(y, z)xi ,

where each hi ∈ C[y, z]. The coefficient of xn+1 from (2) with K = 0 is

−nhn −
∂hn

∂y
− a

∂hn

∂z
= 0.

Solving it we get

hn = F(ay − z)e−ny,
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for some function F. Thus, since hn must be a polynomial we get that n = 0 and
F is a polynomial in the variable ay − z. In short h = h0 = F(ay − z) being F a
polynomial. Then from (2) with K = 0 we get

dF

d(ay − z)

(

a(z − x) + (d + ax + by + cz)
)

=
dF

d(ay − z)

(

d + by + (c + a)z
)

= 0.

Since F is a polynomial first integral it is not constant and thus dF/d(ay − z) 6= 0.
This implies that d = b = 0 and c = −a.

Theorem 3 follows directly from the following two propositions.

Proposition 11. The unique first integrals of Darboux type for system (1) with b = d =
0 and a + c = 0 are functions of Darboux type in the variable ay − z.

Proof. We consider system (1) with b = d = 0 and a + c = 0, that is,

ẋ = y − x2, ẏ = z − x, ż = a(z − x). (10)

It follows from Lemma 10 that this system has the polynomial first integral H1 =
ay − z, which obviously is a generalized rational first integral. To conclude the
proof of the proposition we shall show that system (10) has no other first integrals
of Darboux type independent with H1. To prove this we will use Theorem 7. First
we note that the singular points of system (10) are of the form (x, x2, x) with x ∈
R. We compute the eigenvalues λ1, λ2, λ3 of the Jacobian matrix of this system on
these singular points and we get

λ1 = 0, λ2,3 =
1

2
(a − 2x ±

√

(a + 2x)2 − 4).

Therefore k1λ1 + k2λ2 + k3λ3 = 0 is equivalent to

k2(a − 2x +
√

(a + 2x)2 − 4) + k3(a − 2x +
√

(a + 2x)2 − 4) = 0,

or in other words,
k2

k3
= − a − 2x +

√

(a + 2x)2 − 4

a − 2x −
√

(a + 2x)2 − 4
. (11)

It is clear that the left-hand side of (11) is a rational number (because k2, k3 ∈ Z),
and that choosing x in a convenient way the right-hand side of (11) is irrational.
Therefore (11) cannot hold for this convenient choice of x. Hence for this special
singular point (x, x2, x), the dimension of the minimal vector space of R

3 contain-
ing the set

{

(k1, k2, k3) ∈ Z
3 : k1λ1 + k2λ2 + k3λ3 = 0, (k1, k2, k3) 6= (0, 0, 0)

}

is clearly one generated by (1, 0, 0). Thus it follows from Theorem 7 that system
(10) can only have one generalized rational first integral, which is a function of
H1. This completes the proof of the proposition.

In the next result we characterize the exponential factors of system (1) with
either b 6= 0, or d 6= 0, or c + a 6= 0.
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Lemma 12. The unique exponential factors of system (1) with either b 6= 0, or d 6= 0, or
c + a 6= 0 are:

(a) ey and eay−z with cofactors z − x and d+ by + (c + a)z if a + c 6= 0, or a + c = 0
and b 6= 0.

(b) ey, eay−z and e(ay−z)2
with cofactors z − x, d and 2d(ay − z) if a + c = 0 and

b = 0.

Proof. Let F = exp(g/h) be an exponential factor of system (1) with cofactor L,
where g, h ∈ C[x, y, z] with (g, h) = 1. Then from the definition of exponential
factor and in view of Proposition 5 we have that either h is a constant the we can
take h = 1, or h is a Darboux polynomial of system (1).

Case 1. We first assume that F is of the form F = exp(g) where g = g(x, y, z) ∈
C[x, y, z] \ C, with cofactor L = L(x, y, z) of degree at most one. Without loss
of generality we can assume that g has no constant term and that we can write
L = l0 + l1x + l2y + l3z. So we have

(y − x2)
∂g

∂x
+ (z − x)

∂g

∂y
− (d + ax + by + cz)

∂g

∂z
= l0 + l1x + l2y + l3z. (12)

We write g as a polynomial in the variable x as

g =
n

∑
i=0

gi(y, z)xi ,

where each gi ∈ C[y, z]. The coefficient of xn+1 from (12) if n ≥ 1 is

−ngn −
∂gn

∂y
− a

∂gn

∂z
= 0.

Solving it we get
gn = F(ay − z)e−ny,

for some function F. Thus gn = 0 if n ≥ 1. For n = 0 we have g = g0(y, z) and
the coefficients of x from (12) are

− ∂g

∂y
− a

∂g

∂z
= l1,

z
∂g

∂y
− (d + by + cz)

∂g

∂z
= l0 + l2y + l3z.

Now solving it we get from the first equation

g = G(ay − z)− l1y;

and from the second, introducing the variable u = ay − z, we obtain

(d + by + (a + c)(ay + u))G′(u) = −l0 − l2y − (l1 + l3)(ay + u). (13)

We consider different subcases.
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Subcase 1.1: a + c 6= 0. In this case solving (13) we get

G(u) = − 1

(a + c)2

(

(a + c)(l1 + l3)u + (−(l1 + l3)(d + by)

+ (a + c)(l0 + l2y)) log(d + (a + c)u + (b + a(a + c))y)
)

.

Since G(u) must be a polynomial we get

l0 =
d(l1 + l3)

a + c
, l2 =

b(l1 + l3)

a + c
and G(u) = − l1 + l3

a + c
u.

Then g = −l1y − (l1 + l3)(ay − z)/(a + c).

Subcase 1.2: a + c = 0 and b = 0. In this case, d 6= 0 and solving (13) we get

G(u) = − u

2d

(

2l0 + (l1 + l3)u + 2(l2 + a(l1 + l3))y
)

.

Since G(u) must be a polynomial independent of y we get

l2 = −a(l1 + l3) and G(u) = − u

2d

(

2l0 + (l1 + l3)u
)

.

Then g = −l1y − (ay − z)
(

2l0 + (l1 + l3)(ay − z)
)

/(2d).

Subcase 1.3: a + c = 0, b 6= 0 and d = 0. In this case solving (13) we get

G(u) = − u

2by

(

2l0 + (l1 + l3)u + 2(l2 + a(l1 + l3))y
)

.

Since G(u) must be a polynomial independent of y we get

l2 = 0, l3 = −l1 and G(u) = − l2u

b
.

Then g = −l1y − l2(ay − z)/b.

Subcase 1.4: a + c = 0, bd 6= 0. In this case solving (13) we get

G(u) = − u

2(d + by)

(

2l0 + (l1 + l3)u + 2(l2 + a(l1 + l3))y
)

.

Since G(u) must be a polynomial we get

2l0 + (l1 + l3)u + 2(l2 + a(l1 + l3))y = κ2(d + by), κ ∈ C \ {0}.

Solving it, we obtain

κ =
l0
d

, l3 = −l1, l2 =
bl0
d

and G(u) = − l0
d

u.

Then g = −l1y − l0(ay − z)/d.

Case 2. We study the exponential factors of the form exp(g/h) with cofactor
L = L(x, y, z) of degree at most one, (g, h) = 1 and h is a Darboux polynomial.
Therefore g and h satisfy

(y − x2)
∂g

∂x
+ (z − x)

∂g

∂y
− (d + ax + by + cz)

∂g

∂z
= Kg + Lh, (14)
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where we have simplified the common factor exp(g/h) and we have used the
fact that h is a Darboux polynomial of system (1) with cofactor K. By Theorem 1
and Lemma 6, a = b = 0, c 6= 0, h = (cz + d)n with n ≥ 1 and K = −nc. Then
(14) becomes

(y − x2)
∂g

∂x
+ (z − x)

∂g

∂y
− (d + cz)

∂g

∂z
= −ncg + (l0 + l1x + l2y + l3z)(d + cz)n,

(15)
with n ≥ 1. We denote by ḡ the restriction of g to z = −d/c. Then ḡ 6= 0 (since
otherwise (h, g) 6= 1). In this case, ḡ satisfies

(y − x2)
∂ḡ

∂x
−

(d

c
+ x

)∂ḡ

∂y
= −ncḡ. (16)

We write ḡ as a polynomial in the variable x that is ḡ = ∑
m
i=0 ḡi(y)x

i . Then the
coefficient of xn+1 in (16) satisfy

−mḡm − dḡm

dy
= 0,

which yields ḡm = Cme−my. Since ḡm must be a polynomial we have m = 0 and
ḡ = ḡ0 = ḡ0(y). Therefore, from (16) we get

−
(d

c
+ x

)dḡ0

dy
= −ncḡ0,

which yields ḡ0 = 0, in contradiction with the fact that ḡ 6= 0.

Proposition 13. System (1) with either b 6= 0, or d 6= 0, or c + a 6= 0 has no first
integrals of Darboux type.

Proof. It follows from Theorem 4 that system (1) has a first integral of Darboux
type if and only if there exists λi, µj ∈ C not all zero such that equation (3) is satis-
fied where p, q are the numbers of Darboux polynomials and exponential factors,
respectively. Furthermore, Kj and Lj are the cofactors of Darboux polynomials
and exponential factors, respectively. It follows from Theorem 1 that the cofactor
of the Darboux polynomials of system (1) when a = b = 0 and c 6= 0 is −c and
otherwise there are no Darboux polynomials of system (1). We consider three
different cases.

Case 1: a = b = 0 and c 6= 0. In this case a + c 6= 0 and it follows from Theorem 1
and Lemma 12 that equation (3) is equivalent to

−cλ1 + µ1(z − x) + µ2(d + cz) = 0.

Solving it we get λ1 = µ1 = µ2 = 0. In short there are no first integrals of
Darboux type in this case.

Case 2: a + c = 0 and b = 0. In this case d 6= 0 and it follows from Theorem 1 and
Lemma 12 that equation (3) is equivalent to

µ1(z − x) + µ2d + 2µ3d(ay − z) = 0.
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Solving it we get µ1 = µ2 = µ3 = 0 and there are no first integrals of Darboux
type in this case.

Case 3: Remaining cases. It follows from Theorem 1 and Lemma 12 that equation
(3) is equivalent to

µ1(z − x) + µ2(d + by + (c + a)z) = 0.

Solving it we get µ1 = µ2 = 0 which concludes the proof of Proposition 13.
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