Application of duality techniques to starlikeness
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Abstract

Let A be the class of normalized analytic functions in the unit disc and let
P, (a, B) be the class of all functions f € A satisfying the condition

yen sfof1on () 8 (42 - o

We consider the integral transform

Vil = { [ 20 (@)dt}

where A(t) is a real-valued nonnegative weight function normalized by

fol A(t)dt = 1. In this paper we find conditions on the parameters «, B, v, i
such that V), ,(f) maps P, (a, B) into the class of starlike functions of order .
We also provide a number of applications for various choices of A(t). Our
results generalize known results on this topic.

1 Introduction and preliminaries

Let A be the class of functions of the form

f(z) =z+ i anz",
n=2
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which are analytic in the open unit disc U = {z € C;|z| < 1}. Let S*(«) denote
the subclass of A consisting of all functions which are starlike of order y in U.
For functions fi(z) (j = 1,2) given by

filz) =z+ ) a;.2", (j=1,2),
n=2

the Hadamard product (or convolution) of f1(z) and f,(z) is an analytic function
given by

(fixfo)(z) :=z+ i a nixnz", (z € U).

n=2

By applying the Pochhammer symbol (or the shifted factorial) given by
(a,0) =1 < mboxand (a,n)=a(a+1)(a+2)..(a+n—-1), (n=123,..),

it is known that the familiar Gaussian hypergeometric series defined by

F(a,b;c;z) = i %z”, (a,b,c e C,c ¢ {0,-1,-2,...}),
n=0 \&s ’

is analytic in the unit disc U.

Throughout this paper the function A : [0,1] — R is considered to be a non-
negative function with fol A(t)dt = 1.

For « > 0 and f € A, we define the weighted integral transform

Valh@ = ([ A0 (@)dt) (&

where for the power function the principle branch is taken.

We recall that the operator V) ,(f) reduces in some special cases to well-
known operators such as the Libera, Bernardi, and Komatu operators. This oper-
ator V) ,(f) has been studied by a number of authors for various choices of A(t)
(see e.g. [1,3,4,8,9]).

For < 1,04 > 0and 0 < ¢ < 1, we introduce the class P, («, §) of all functions
f € Asuch that

R {ei” [(1 ) <@)“ + ’yzjj:;g) (@)w — [3} } 0, (zelU,neR), (1.2

where for the power function the principle branch is taken.

If » = 0in (1.2), then Liu [6] gave a univalent criterion for the class P, (a, B).
Furthermore, if f € P,(1, ), many authors used duality theory for their discus-
sion of the starlikeness of V), 1(f). (e.g. [2,4,5,7]). By using similar methods for a
function f € V) ,(f), we here want to find conditions on «, 8,y and y such that

Vaa(f) € S*(1).
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2 Main Results

In this section we start by considering the functions in P,(«,p) for which
a > 0,0 < B <1and v isany number in [0,1]. Leta« > 0,y > 0 and define

A0 = [ AL .

&
S

Further let g(#) be the solution of the initial value problem

M- (1-a+ta
% (f%(l +g(t))> = %t L (1(1 V)(;; f))z(l T cm=1 @

Solving (2.1), we find

o(t) = 77(?_7 3 /Ot = a _(i‘j:z‘)@(l nalD P (2.2)
Theorem 2.1. Let « > 1, 7y >0,1—% <u< 1—%andﬁ < 1 be given by
p / A (Dbt 23)
1-5 0

where g(t) is given by (2.2). Assume that lim,_,q+ t%AW(t) = 0. Then V) ,(f) € S*(n)
if and only if

é)%/ol A (D)5 [h(tz) 1 _0521__“5(‘1‘@(:); ﬂ dt >0, (2.4)
where
h(z) = (1_12)2 [1+ H;a_(fi(;)_ P‘)z}, & = 1. 2.5)

Proof. Let f € P, (a, B) and define

o ! o
-7 (£2) ++3E (£2) -
1-p8 '
Then for some 7 € R we have R (e H(z))0. Setting F(z) = V) ,(f)(z), we want
to find conditions such that 3%252(5)
[10]) we may restrict our attention to the function f € P,(a, B) for which H(z) =

e, |x = [yl = 1.

Set G(z) = (@)lx, then it is easy to see that G is analytic in U and G(0) = 1.

Since Zlféz)) =1+ %Z&S), it is well known (see [10]) that F is starlike of order y if

H(z) =

> u, z € U. By the duality principle (see

and only if

1zG'(z) _ zF'(z) 1+t
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After some algebraic computation we find that it is equivalent with the following
condition

F e S*(u) <= <¥)“*h(z) #0, zel,
where
1 C+1—2a(1—p) B
O = g [ g ] =1

Hence F € S*(p) if and only if (y # 0),
SYLCI

P A w7 11+ xw)

_/0 ot s [ fyzv/ T yw dw + B| *h(z)
B 1 B w7~ 11+ xw)
_(1—5)/0 A(t)(h( ”ﬂ)dt*w/ Ty dw
o 1 2 § w1 + xw) »
41@4me>gmw,m/ e

B 1 A B >|<1—|—xw
_(1—[3)/0 A(t) [72%/0 W h(tw)dw g(t)] dt T4y

By the same method of proof as in [2], it is easily verified that this holds if and

only if
R R

which completes the proof. m

Note that by putting « = 1 in Theorem 2.1, we obtain the result of Balasubra-
manian et al [2]. Theorem 2.1 is not at once very useful because we have to check
condition (2.4), in order that V) ,(f) € S*(u). Therefore we will identify some
situations where (2.4) holds. We introduce

I1—-(1—a4apu)(1+t

)
d-waree W

La, () = inf [ 2,03 [ROh(12) -

zel
and formulate the following result.

Theorem 2.2. Let « > 1,1 — % <pu<1l-— ﬁ Assume that A, (t) is integrable on
[0,1] and positive on (0,1). Further suppose that

Av(t)t%(“_l)
(log 13211

is a decreasing function on (0,1). Then for % <y < 1lonehash Av(h) > 0, where h is
defined above.
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Proof. We shall omit some details here because there are many similarities be-
tween this proof and the proof of Theorem 1.3 in [2]. So we want to prove the
following inequality

1 —at+ap)(l+t)
a(l—u)(1+1t)2

/01 Ay ()7 {%(h(tz)) ] dt>0zel 2.6)

where hi(z) is given by

B 1 C+1—2a(1—p) B
) = [+ ey W=t

Using the same argument as in [4] we see that it is sufficient to prove (2.6) for
z| = 1. Ttis easily verified that (2.6) holds if

1 e_q 20(1 —p) 4+ [1—2a(1 — p)ltz
/0 A (DETHR e
t 21— (1 —a+apu)(1+1)]
1=tz (1+1)2 yat =0,

for |z| =1,z # 0. Further calculations result into the equivalent condition

H) = [ A0 (b1 (06) 20— a1~ ) Ax(y, ] di 20,

where
Ar(y, 1) = 3—4(1+y)t+2(4y — )2 +4(y— 1) — 4
W= (1+ 2 —2y0)2(1 + 1)2 /
and
1—t

Asx(y,t) =

(1+#2=2ty)(1+1)’
with —1 <y = Imz < 1. A series expansion of H is obtained by

H(y)=Y H(1+y)" [1+y/ <2,
k=0

where H; is a positive multiple of

~ 1 4
o= [ 6 A1) — 201 - (L - ) (1)]at,

with
tk +1

W(l — ).

o (1) = k3! (

k-1,

k+3
We can see that A = Si(t) — 2(1 — a(1 — u))U(t) has just one zero in (0,1). We
denote this zero by fy; it is well known that A > 0if 0 < t < t;, while A < 0 if
h <t<l.
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Let i be of the form:

1, 1\ 12
= [ 87 (1og()) T (Sulo) — 2o,
where y; =1 —a(1 — u). Define

I4+2p 1,
Aqlte) (log(d)) e Y

(1og(1)) "

a—1)

An(t) = A (t) —
o (1) He

1
Ay (1)t
(log %)14—2;41

Sk(t) — 2u1Uk(t) have the same sign in (0,1). Therefore

1 s1% B T A'y(tk)
OSLA F VAL () (Sk(F) — 2p1 Uy (1))dt = T Oogh501+w10)_5”_”

If we can prove that iz > 0, then it follows that ﬁk > 0and also Ly, (h) > 0 as

desired. Along similar lines as in the proof of Theorem 1.3 in [2], one can observe

that this is true for % <v<1,1- % <pu<l-— %, which completes the proof. =

The assumption that is decreasing, implies that /Ky(t) and

We remark that the spacial case of Theorem 2.2 where & = 1, has been studied
by Balasubramanian et al [2].

Before stating our next results we will find an equivalent condition for the

7 (@=1) 0
Ay(DE7 - tobe decreasing on (0,1), where A, (t) = ftl A(s)s™ 7ds.

function ¢(t) = L5
g(t) (log 1)3-2x(1-

Taking the logarithmic derivative of g(t) and using the fact that A’ (t) =
—A(t)t 7, we have

¢ (1) —Mﬂr%+a—1+3—ma—y)
gt) A4 7t tlog{

Note that g(#)0, so ¢'(t) < 0 for t € (0,1) is equivalent with the inequality

fy)x(t‘)t‘_%Jrl log 1
(¢ —1)log ¢ +7(3 — 2a(1 — p))

Clearly ¢(1) = 0, and for completing the proof it is sufficient to show that i (¢) is
increasing on (0,1). But a simple calculation shows that

() = A, () — <0 for te(0,1).

4“0:Amﬂ%%YM—DO—W%meﬂ—ﬂﬂ—mvw+v—%bg%
(e —1)log  + 1)
t(log 1)*(« — 1)y + 7v*patlog }
(& —1)log § +vpu1)?

—A'(t)
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where 1 = 3 —2a(1 — ). Therefore ¢/(t) > 0 for t € (0,1) is equivalent with

the following inequality
1 1
M) | (log (0 = 1)1 = 1) + 9% (1 = ) = prla+ 7~ 2)log | 22

> V(1) |Hlog e~ )7+ Ptlog ;|
where p; =3 — 2a(1 — u).

3 Applications
Theorem 3.1. Suppose that 1 < a < 2,% <~y <11 —% <u<l- % and that

a,p, u, 7, « are related by any of the following conditions
D@D _ 1 gud g < p <+ 1.

. 2—u
(z)—1<a§7+ #1Y

(ii)—1<a§%—1 and p>1+ u;.
If g(t) is defined by (2.2) and B = B(a, p, vy, 4, &) is given by
B (1+a)p/1u L1
= — t*(log =)? t)dt 3.1
= ) et 1 s 31
then for f € P,(, B), the generalized Komatu operator defined by
1
_[a+a)? e L (fE2))
F(z) = { ) /0 (log ;) ) (3.2)
1
_ - (1 _|_a)P n+a—1 i '
(B )
belongs to S*(u). The value of B is sharp.
MO o p-l
Alt) — t tlogl”

(1+a)? 1a (log %)P_l, then it easy to see that

Proof. Set A(t) = X0
Substituting the value of the above expression in (2.7) we obtain

(log 7 )2(a ~ 1)(1 — 7 —ay) +7log 1 [(~a — 1 +2 —an)pr + (p — Dla — 1]+
Yui(p—m) >0,

which is true for all t € (0, 1) by the hypothesis of Theorem 3.1.
To prove the sharpness, let f € P, («, B) be the function for which
zf'(z z)\" 1+z
1) (FY' oo gyt

1o (F22)" o202 (1
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Using the series expansion we see that

O

n=1

Further, using

! a+n—1 1 —1qp _ F(p)
A 4 log )" dt = (3.3)
and considering (3.2), we obtain
F(z)\" _ oy 1 "
<T) =1+2(1+a)’(1-B) El (n+a+1)v(1+gn)z’ (3.4)
and
F'(z)(F(z))* ! - n+a

z". (3.5)

sz—l :1+2(1+ﬂ)p(1_ﬁ)n¥1 oc(n—l—a—l—l)P(l—t—%n)

Expanding g(t) in (2.2) into a power series, we obtain

i — n—i—tx—ocy)

8(t) = (ny + )

7

which, when inserted into (3.1) and using (3.3), leads to

B 1 +a) i (n+a—ap)
1-8 = a+n+1) (ny+a)
This yields
1 21+a)pP & (—1)"(n+a—ap)
= . 3.6
1-8 1—u Zl(a-l—n-l—l)r’(n’y—l—zx) (3.6)
Dividing (3.5) through (3.4) and substituting z = —1 in this equation and further

using (3.6), it is easily seen that Rt (%) — 1 is zero, which means that the

result is sharp. This completes the proof. n

Theorem 3.2. Leta,b,c,>0,1<a <2, 3 <y<1, 1—% <u< 1—landg(t)
be defined by (2.2). Suppose that B is given by

B _ I'(c)

1-p  T(@I()I(c—a—br1)

/ =1 ) " PF(c—a,1—a;c—a—b+1;1—t)g(t)dt.
Then for f € Py («, B) the function
H(2) = Hypoa(F)(2) = i x
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</01tb—1(1—t)C—a—bF(c—a,l—a;c—a_b+1;1_t) (@)“dt)%

belongs to S*(u) whenever Z_T’" —2+42a(1—p) >0anda,b,c,y,« are related by any
one of the following conditions,

(i)aec (0,1], 0<b < Z_T“—Z—i—Zoc(l—y) and c¢c—a—b>2—-2a(l—u).
.. 2— .
(i) a+2 —2a(1 — p) < =5, with

2—a)(c—a—b+1)

b+2-2a(l—p)<c—a< YVe—a-b+1)a+2-2a(1—-p)1—-a)]

The value of B is sharp.

Proof. Set A(t) = kt""1(1 = )" (1 — £), k = rrorrpiamprry, and p(1 — 1) =

F(c—a,1—a;c—a—b+1;1—t). Then we have

o = ([ 20 (12 )

According to (2.7), it suffices to verify the inequality

(log $)*(a« — 1) ((% - b)(1 —t)+t(c—a—b)) (3.7)

1—t
log 1

s (1222 sf -t —a=)) + (- o)

> 802 (tlog 32— 1) +piog 1 ).

Case (i): let0 <a < land0 < b < Z_T“—2+20c(1—pt) andc—a—b >
2 —2a(1 — p). The hypotheses imply that each term between the brackets is posi-

tive for t € (0, 1), while it is easy to see that each of the Maclaurin coefficients of ¢

/ 1
is nonnegative, so that % is nonnegative on [0,1]. Therefore, in view of 1?% F>1,

the inequality (3.7) holds for ¢t € (0,1) if

2 —
(B b+ =m) =+ (c—a—bt - 20
which clearly holds under the hypotheses of the theorem.
Case (ii): Assume thata +2 —2a(1 — ) < Z—sz’ and

2—a)(c—a—b+1)

b+2-2a(l—p)<c—a< YVe—a-b+1)a+2-2a(1—p)1—a)]
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Now, for convenience, we put 3y = 3 —2a(1 —u),A = c—a,B = 1—ag,
C=c—a—b+1and ¢(t) = F(A,B;C;t). Then by a simple calculation we
obtain

tg/(1—t) AB <tP(A+1,B+1;C+1;1—t)) € (0,1) (3.8)

p(1—t) C F(A,B;C;1—1)

Using (3.8) and the following identity, which can obtained by comparing the co-
efficients on both sides:

% —t)%F(AH,BH;CH;t)
=—(C—1-AHF(A,B;C;t) + (C—1)F(A,B—1,C—1;1),
(3.7) results into

(3.9)

(log 1)*(x — 1) [1—t

13 > F(A,B,'C;l—t)+(C—l)F(A,B—l;C—l;l—t)]

lo _
+in vlgf { 0‘(1—t)F(A,B;C;1—t)+(C—l)F(A,B_l;C_l;l_t)}
> (1 —D)mF(A B;C1—t).

By making use of the series expansion of the hypergeometric function, we find
that (3.9) is equivalent to

(c—a—b)<ﬂ7110gt+(logt1)_(t 1)>+

(log H)2?(a—1) & (A, n)(B,n) 1 1 n
1=t nzo (C n)(1,n+1) <§+(§ —a)n+ (C—a)(—a)) (1—H)"+14

ool = N — —

Y
> (p —DmyF(A B;CG1—t). (3.10)

The above hypotheses imply thatc —a —b > 0, (c —a)(—a) + % -+ (% —a) >0
and 2_7"‘ -+ (Z_T"‘ —a)n+ (c —a)(—a) > 0 for all n. So the square bracketed terms

1
in the inequality (3.10) are nonnegative. Hence, in view of 1?% f>1fort e 0,1),
it suffices to show that

ad (A,n)(B,n)

Ca—b— (-1
c—a (11 )+7§(C,n+1)(1,n+1

AR H">0,t € (0,1),

(3.11)
where

¢<n>=<c—a—b+1+n>{2;"‘+<2;“—a>n+<c—a><—a>}

—(p1—1)(c—a+n)(1—a+n).
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But, by hypothesis, we see that ¢(n) is an increasing function of n > 0, and
therefore (n) > 1(0) > 0. Thus the inequality (3.11) holds. Following the same
lines as in the proof of the previous theorem, one can see that the result is sharp.
This completes the proof.

Note that for « = 1 we obtain the result of Balasubramanian et al [2]. [ |
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