On the orthogonal polynomials with weight
having singularities on the boundary of regions
in the complex plane

F. G. Abdullayev U. Deger

Abstract
The order of the weight of orthogonal polynomials is analyzed, when
this weight function shows singularities on the boundary of a region in the
complex plane.

1 Introduction

Let G C C be a finite region, with 0 € G, bounded by a Jordan curve L := dG,
let o be the two-dimensional Lebesgue measure, and let 1 (z) € L'(G, do) be a
weight function defined in G.

A system of polynomials {Kj, (z)}

o
n=0"

J[ 1@ K () K e = S,

where 6, ,, is the Kronecker delta, is called a system of orthonormal polynomi-
als for the pair (G, h) . It is determined uniquely if the coefficient of the highest
degree term is positive.

Let {z]'};“:l be a fixed system of points on L and the weight function & (z)

deg K;, = n, satisfying the condition

defined as the follows:

h(z) = hg (z)l—“z—zjw, (1.1)

j=1
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where y; > —2for j = 1,m and hg (z) is uniformly separated from zero in G:
ho(z) > ¢ >0, VzeG.

In this paper we continue the study of the estimation problem of the maxi-
mum norm B
[Knllc) = max {|K,(z)|, z € G}

of orthogonal polynomials over a region with respect to a weight. The polyno-
mials are defined by the pair (G, ). Therefore, the variation of the norm of these
polynomials depends on the properties of the region G and of the weight h(z).
Similar problems have been studied in [1],[2],[3], in case of orthogonality along a
curve and in [4]-[10],[11], in case of orthogonality over a region. In addition, we
also generalize this problem for arbitrary algebraic polynomials P, (z) of degree
at most n.

2 Main results

Throughout this paper c,cy,cy, ... are positive, and ¢, €1, &, ... sufficiently small
positive constants (mostly different in different relations), which, in general, de-
pend on G.

For 6 > 0Oand z € C letus put: B(z,0) := {{:|{ —z| <}, B := B(0,1),
A(z,8) := ext B(z,8) (with respect to C), A := extB, Q) := extG, Q(z,6) := QN
B(z,6); w = ¢(z) (w = ®(z)) the univalent conformal mapping of G (Q2) onto
the B(A) rllormalized by ¢(0) = 0,9 (0) > 0 (P(c0) = 00, D (c0) > 0), ¢ := @~
(Y :=07).

Definition 2.1. A bounded Jordan region G is called a k -quasidisk, 0 < k < 1, if the

conformal mapping ¢ can be extended to a K -quasiconformal, K = %f’i, homeomorphism

of the plane C onto C. In that case the curve L := 9G is called a k -quasicircle. The
region G (resp. curve L ) is called a quasidisk (resp. quasicircle), if it is a k -quasidisk
( k -quasicircle) for some 0 < k < 1.

Theorem A[9]. Let G be a k -quasidisk for some 0 < k < 1, and let the weight
function h (z) be defined by (1.1) with y; = 0, j =1, m. Then, for everyn =1,2, ...

Definition 2.2. We say that G € Q,, 0 < a <1, if
a) L is a quasicircle,
b) @ satisfies the Lipschitz condition of order a on Q) : @ € Lip,(Q).

Theorem B[9]. Let G € Qq, for some 0 < o < 1 and let the weight function h (z)
be defined by (1.1) with y; =0, j =1,m,

Dif o« > %, then for everyn =1,2, ...

1
19

HK”HC(C) < cone,
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2)if « < 3, then there exist a number 6 = 6(a, G), 5 € [1,2], such that for every
n=12,..
[Knllc) < con’, 2.1)

Now we assume that the weight function / (z) defined as (1.1) where ; # 0,
for some j > 1. Note that throughout this paper we use the same sequence of
. . m o
singular points {Zj}jzl defined by (1.1).

We now state two theorems the proof of which is given in the next section.

Theorem 2.1. Let G be a k -quasidisk for some 0 < k < 1, and let the weight function
h (z) be defined by (1.1). Then, for each point z, j = 1,m, and for every n = 1,2, ...

‘Kn (Z]) ‘ < C31’l(1+¥)(1+k).
Corollary 2.2. Under the same conditions as in Theorem 2. 1, one has

IKnlleg) < canHHA+0),

v i= max{O; Vi J =1,—m}, n=1,2,...

Theorem 2.3. Let G € Qq, for some 0 < a < 1, and let the weight function h (z) be
defined by (1.1). Then, for each point z;, j = 1, m, and for every n = 1,2, ...

y
|Ka(z7)] < esn1F 28,

_ [ 4 ifa>g,
P=16, ifa<]

where

and ¢ is defined as in (2.1).
Corollary 2.4. Under the same conditions as in Theorem 2. 3, one has

1Kl @) < e+ Hr

= max{O; Vir ] :L—m}, n=12,...

In our previous work [7, Prop. 1-3], we discussed the sharpness of results sim-
ilar to those contained in Theorems 2.1, 2.3. Therefore, using a similar reasoning
we can also determine the sharpness in the Theorems 2.1, 2.3.

Definition 2.3. Let z € Land v € (0,1) be fixed. We say that O € Q(z;v), if L
is a quasicircle and there exists r > 0 such that a closed circular sector S(z;r,v) =
{C:C=2z+71e"0< 00 <0< 0g+v} of radius r and opening v lies in G with ver-
tex at z.

Definition 2.4. Let vy,..., vy and a, with 0 < vy,.., vy < a < 1, be fixed. We

say that QO € Qu (81, Cos oo Sy V1y oor V), If for every j, Q € Q (g]-;u]-> and ® €
Lipa(@\ {2; ).
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Let ) € Qu (81, 8o+ Cpps V1, s V), 0 < V1, e,V < & < 1. Assume that the
system of points {z;}, j = 1,m and {gj} ,j = 1,m mentioned in (1.1) and in

Definition 2.4 respectively, are identically ordered on L, i. e. zj=( ir j=1m.In
[9], we showed that if the interference condition
T 1

140+
+2 a(2 —vj)

is satisfied for each singular point {z;}, j = 1,m, of the weight function and the

boundary contour, then the growth rate of the polynomials K, (z) in G does not
depend on whether or not the weight function /(z) and the boundary contour L
show singularities. In [10], one of the authors investigated this problem in the
case where

2 T al2- 1/]') '

In the present paper we also investigate the case when the opposite of (2.2)
holds.

(2.2)

Theorem 2.5. Let O € Qu (21,22, Zm; V1, oy Vm) , for some 0 < vj < 1 and
®(2—v;) >1,j =1,m,and let h(z) be defined by (1.1). If

i 1
1+=>—— 2.3
T a(2 —vj) 23)
holds for each point zj, j = 1,m, then for each point z;, j = 1,m, and for every
n=12,..
m ~
max ( [ |z — 21" [Kal)| ] < cont”,
zeG j=1
|Kn(2))] < esn,
where
=1+ ﬁ — #
I 2 a2-v))

- Vi ,
5= (1—1—?]) 2—-v)), j=1m.

The conditions (2.3) might be satisfied when y; > 0, j = 1, m. For that reason
we will call (2.3) the algebraic zero conditions of order u i= a(2—vj) (1 + %) -1
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3 Some auxiliary results

Fora > 0 and b > 0 we shall use the notations “a < b” (order inequality) if
a < cb,and “a < b"” if c;ja < b < cpa for some constants c, c1, ¢ respectively.

Let G be a quasidisk. Then there exists a quasiconformal reflection y/(.) across
L such that y(G) = Q,y(Q) = G and y(. ) fixes the points of L. The quasicon-
formal reflection y(.) is such that it satisfies the following condition [12, p. 26],
[13]:

1
¥@) -zl =< le-zl, zele<li << @)

)yz‘ = |y =<1, e<|l| < %,

- 2 _2 1
ve| = WP, 1l <e Jv| =17 02l > <

Fort > 0, let Ly := {z:|p(z)| =t if t <1, |®(z)| =tif t >1},Gs = intLy,
Oy :=extLs. For R > 1let L* := y(Lgr), G* := intL*, (O* := extL*; w = Or(z) be
the conformal mapping of Q* onto the A normalized by ®g (o) = 0o, &y (c0) > 0
;¥R = @gl. Fort > 1,let L := {z:|Pr(z)| = t}, G} = intL}, Qf = extL};
d(z,L) := dist(z,L).

According to [14], for allz € L* and t € L such that |z — t| = d(z, L) we have

d(z,L) = d(t, L) = d(z,Lg). (3.2)

Lemma 3.1. [4]. Let G be a quasidisk,zy € L, zp,z3 € QN{z: |z —z1| <d(z1,Ls,)};
wj = <I>(zj),j =1,2,3. Then

a) The statements |z1 — zp| < |z1 — z3| and |wy — wo| < |wy — w3| are equivalent.
So are |zq — zp| X |21 — z3| and |wy — wo| < |w1 — w3 .

b) If |z1 — zp| < |z1 — z3]|, then

21— Z3
Z1 — 22

’wl—w3 ¢

’wl—w3 ‘

w1 — Wy w1 — Wy

where 0 < ry < 1 a constant, depending on G and k.

Lemma 3.2. Let G be a k -quasidisk for some 0 < k < 1. Then
[¥ (1) = ¥ (w2)] = fwr = o],

forall wy,w, € Q.

This fact follows from of an appropriate result for the mapping f € Y (k)
[15, p. 287] and the estimate for the functions ¥ [12, Th. 2. 8].

Let Ay(h, G), p > 0 denote the class of functions f which are analytic in G and
satisty the condition

P, = Wl = ([LH@ VG ) <o
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Lemma 3.3. [8]. Let G be a quasidisk and let P,(z), degP, < n,n = 1,2,..., be an
arbitrary polynomial and let the weight function h(z) satisfy the condition (1.1). Then,
forany R >1,p > 0and n =1,2,... one has

41
1Pall 4,1, Gy y) < c6R" 7 || Pall ) - (3.3)
where c, cy are independent of n and R.

Lemma 3.4. Let G be a quasidisk; zy € L, and let z € L* := L* (1 + %) ,n=1,2,..
such that d (zq, L*) = |z1 — z| . Then, the relation

{C:|C—z|<c1|z1—2z|} CG
holds for some constant c; = c¢1 (G,D,K),0 < ¢1 < 1.

Proof. Letd (z,L) = |z0 —z| < |z—z1|, 22 € L. LetI' = T'(z,22;2%, 21,Gg,) be a
family of locally rectifiable curves and separating z and z, from z; and z* € Lg,
in Gg,, where Ry = Ro(G, ¢,y) > 11is a fixed constant. Using the quasiconformal
reflection y(.) we can extend the function ¢ to a quasiconformal homeomorphism
$:C—C,9(0)=0,¢(0) =co.LetI" = @ (T) . Then, it is easily shown that the
module m (T') and m (T”) satisfy

1 Z1—2
>
m(T) > = Inc, 2| (34)
¢ (21) — ¢ (2)

m (I') < %ln%

(3.5)

¢ (z2) —¢(2)|’
where ¢; = cj(G, Ro), j = 2,3, are independent of z, z1, zp. As |zp —z| < |z1 —z],
according to Lemma 3.1, we get |¢ (z2) — ¢ (2)] < |¢ (21) — ( )| . On the other

hand, letd(g(z1), (L") = |p(z1) — ], tleso@*)andd(go(z) B) = lo(z) ],
tp € dB. We then obtain |¢(z1) — | < |¢(z1) — ¢ (2)] =< |e(z) —t] =

¢ (22) — ¢ (2)], and consequently, |¢ (z1) — ¢ (2)] < ¢4 Iq)(z ) = ¢ (2)|. Hence

m (I') < %lnc}q = cs5.

So, considering the modules to be quasi-invariant [13, p. 14], it follows from (3.4)
and (3.5) that

s> m (r/) > C—Z(K)m () > Cz(;)Zﬂ

where C(K) is the quasiconformality coefficient of the reflection y(.). Then,

2rrC

|zo — z| > cpe Kies |2 — z].

Taking c as
1 ) —271C?(K)cs

completes the proof. n
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4 Proof of Theorems 2.1 and 2.3

Proof. We first give the proof of Theorem 2. 1. Without loss of generality we may
take j = 1. As L is a quasicircle, we also have that each Lg, R = 1+ %, is also a
quasicircle. Therefore, we can construct a ¢ (K)-quasiconformal reflection yg (z),
yr (0) = oo, across Lg such that yg (Gr) = Qg, yr (Qr) = Gr and yg(.) fixes
the points of L that satisfy conditions (3.1) rewritten for yr (z) . By using yr (z)
constructed in this way, we can write the following integral representation for

Ku(z) [12, p. 105]
:__// EW do;, z € Gy (4.1)

We put Ue(z) := {C: |0 —z| < s}, ¢ > 0; without loss of generality we may take
U, := U(0) C G*. For z; € L we have

Ky (21)] < //|Kn ) |’ng’ //||Iy<; gng’dUg it (42)

To estimate the integral J;, we multiply the numerator and denominator of the
integrand by /h((), and applying the Holder inequality we obtain

’ng‘

//h ) |Kn ()2 dor; - // _do;
¢) lyr (0) — z1|

// J/R,Z’ v// ’ng’

1 -n e (@) - af* GEE

According to (3.1) ‘yRZ) = |yR(§)|2, for all { € U, because of | —z1| > ¢,

lyr() —z| < |yr(Z)| for z € L and { € Ue. On the other hand, if , , := ]yR,dz -

2
’y RZ‘ is the Jacobian of the reflection yz (), we obtain

2
U%R‘ ~ ‘yR,Z}

as in [9]. Then, we can find

22|
]%</LZ‘]%RHR;_Z” // |€_le , (4.3)

|{—z1|>c1

For the integral ], we have

// ’ng’ dain,l' / YR (Q) — 21| |Kn ()P doy =: Jo1 - Joo. (44)

Gr\Ue YR (8) — 21 Gr\Ue
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First we establish that

I —z1] < |yr (§) — 21| < |¢ — z1| +d (z1, LR) (4.5)

forall { € Gg\U; and z; € L.
Let |zy —t| = d(z1,LR), t € Lr. According to (3.1) we have ¢; < ’yRZ’ o)
and ¢3¢ —z| < |yr () —z| < c4|l —z|, forall { € Ggr\U; and z € Lg. Then

C—z| < [Z—t[+|yr () —t[+ |yr (T) — z1]

< (1) R @~ +Iyr () - =
< yr (§) — =1

On the other hand

YR (§) =t + [t = [+ [0 — 2]

lyr (0) —z1| <
< (a+ [t =gl +[C—z1] <[t =C|+ [T —z].

Using (4.5), we obtain for the integral J;

</ / 4+~n (4.6)

y(G \ug

do _
< |/ ﬁ < d= 0 (2, L)
|C—z1|>d(z1,LR) =

Lety > 0.1f € U(z1) =: {C: | —z1]| <d(z1,Lr)}, then using (4.5), we have
lyr (¢) — z1| < | — z1| . Therefore, according to Lemma 3.3, we obtain

Jo = // ’yR (2) —z1|" |Ky (C)’Zd‘fé

GR\ USUU

+// |yR —zw K (2 do

< // 12— 21" |Ky (D)2 dor @)

GR\ UgUu Zl

+d" (21, Lg) / / Ky (21)]? dor;

< [[r @K@ do
Gr

+d"1 (21, Lg) . max_|K, (2)[*.mesU (z1)
¢el(z)
< 14 max |K, ()]*.d*"1 (2, Lg).
gel(z)
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Using the lemma of Bernstein-Walsh [16] and Lemma 3.4 we obtain

max [Ky (§)] < max|Ky (§)| < max|Ky (¢)] < max |Ky (£)]- (4.8)
gel(z) eGr leG eGH

Let { € L* be any point. Applying the Mean Value Theorem to the polynomial

Ky (z) in the disc |z — (| < c¢1d (z1,L*), with the constant ¢; < 1 taken from
Lemma 3.4, we have

1
K @OF < s raewe /[ K@Pd.
1 v |z—C|<c1d(zq,L*)

1 |z — 1|7 [Kn (2)

- d

S EZa D) // z—z
|z—C|<cpd(zq,L*)

*dz(zi,L*)' (1—c1)1i(zl,L*)Fl //

|z—C|<c1d(zq,L*)

|z — 21| |K, (2) [ dos.

Thus,
K Q) < d~ 347 (24,17,

by Lemma 3.3. From (4.7), (4.8) and (3.2) for all p > 0 we get
Joo < 1+4d*™M (21, Lg) 4~ 1) (2, 1%) < 1 (4.9)

If =2 < 71 <0, then |yg ({) — z1|" < | — z1|™, and, consequently, according to
Lemma 3.3, we have
Joo < 1. (4.10)

Relations (4.2), (4.3), (4.4), (4.6)-(4.10) yield

Ky (z1)] < d~(F3) (21, Lg), (4.11)
By Lemma 3.2 the proof of Theorem 2.1 is completed.

The proof of Theorem 2.3 is obtained if we combine the following estimate
with (4.11):
d(z1,Lr) = (R—=1)¥,
where 1 = %,ifoc > %andpt =4, ifa < % with 6 =d(a,G),1 < <2, acertain
number. n

5 Case of arbitrary polynomials

Theorems 2.1- 2.5 can be generalized to arbitrary algebraic polynomials. Let
Py (z) be an arbitrary polynomial of degree at most n and let M,, ;, := || Py || Ay(G) -

Theorem 5.1. Let G be a k-quasidisk for some 0 < k < 1, and let the weight function
h (z) be defined by (1.1). Then, for each point zj € L, j = 1,m, and for everyn = 1,2, ..

(2+7)(1+k)
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Theorem 5.2. Let G € Q,, for some 0 < a < 1, and let the weight function h (z) be
defined by (1.1). Then, for each point z; € L, j = 1,m, and for everyn =1,2, ...

2+

where y defined as in (2.1).

Theorem 5.3. Let p > 1,0 € Qu (21,22, .y Zm; V1, oy Vi) for some 0 < v; < 1and
a(2 —v;) > 1, and let h(z) be defined by (1.1). If
Vi 1
T+ 2 a(2 —v;)

holds for each point z;, j = 1, m, then, for everyn = 1,2, ...

m *
ma (n B |Pn<z>|> < oMy, 5
z€G j=1
}Pn (Zj)} < ClOnS;FMn,p/ (5.2)
where
Hi = - , 8j = ,j=1m.
P pa(2—-vj) p

The proofs of the Theorems 5.1-5.2 are completely similar to the proofs of the
Theorems 2.1-2.3.

Proof of Theorem 5. 3. Let us introduce the Blaschke functions with respect to the
singular points of the weight functions h(z):

il oy 1y Pr(Z) — Pr(z) .
Br(z) EBR(Z) : ]111  Orz) PR (z) z € OF.

It is easily seen that Br(z;) = 0 and |Br(z)| = 1atz € L*. As the system of
points {z; }71:1 on L is finite, we may assume without loss of generality thatj =1,

u* = pi;s* i=sf For R > 1weputRy := 1+ 81 T* := y(Lg), w = ®r (z),
wy = Pr(z1), and

Vi (w) — ¥g (w) 1" P, (Pr (w
o [T M

Let z € L. The Cauchy integral representation for an unbounded region yields

e (@) = 5 [ () 7

27T t—w
|[t|=Rq
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Asforall [t| = Ry > 1,|Bg (¥xr (1)) > 1, [|"T! = R"*! > 1, we obtain

Ay = |¥r (w) — ¥ (w01)|" |Py (¥r ()]

c o 1 ' dt
< b (Y ()" fol™ 5 [ ¥ () =¥ (o0 B (Hr (0)] 20 63
[t[=Rq

As

wBk(z)] = fo- 2R

Dr(z1) —w q)R(Zl)
B w "w—CIDR(zl) | ow
Pr(z1)| [Prlz1) —w Dp(z1) |
we obtain from (3.2) that
[wBg (¥r (W)|* <1, |w|"T <1.
So, from (5.3) it follows that
u |dt|
A= [ TR () = T (o) 1B (R ()] [

tl=Ry
To estimate the integral of at the right hand side, we multiply the numerator

and denominator of integrand by |[¥r (t) — ¥r (w1)|% Y% (t)|% ; then applying
the Holder inequality we obtain

==

An < | 1) = )P (T () ¥R O] e | G4
[t|=Rq
¥R (f) — ¥R (w1) |H*q—7(q—1)

X |dt|
2(g—1
¥ (8) P |t — w)

|H=Ry
= :Al.B].
Let
i (8) = (R () = ¥ (1)) Pu (¥R (1)) (¥ (1)
Now we partition the circle |t| = R; into n equal parts ¢, with mes(d,) = ngli ;

applying the Mean Value Theorem to the integral A} we get

A=Y (1P = ).
k=1 5

fn (t;{) }pmes(ék), t, € .

k=1
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On the other hand, applying the mean value estimate

O 1_“‘ // U@ de
k

i

we obtain
n

)
An =Y Ak,)z [ (§)|FPdoz,  ty € Ok
k=1 7-[(1 - ’tk}) lg_t/
k

Taking into account that at most two of the discs with origin at the points ; are
intersecting, we obtain

M J worie <o J[ o
1—t

1<[g|<Ry 1<2| <R

According to (3.3) we obtain for Al:

Al <n // 1z —z1|7 [Py (2)|P doz < - M3, . (5.5)
G, \G*
1

In order to estimate the integral B}, we take into account the estimate for the
functions Yr (see e. g. [12, Th. 2. 8]). We put

3
{t:]t| =R} = UK,

j=1
where
Ky ={t:|t|=R1,’t—ZU|<€1},
Ky : ={t:|t| =Ry, |t—w| <&},
K3 @ ={t:|t| =Ry, |t —w| > ey, |t —wi]| > e},

w = O(z), w=P(z1).
Then we have
B~ | [¥r (1) = ¥k (wn) [0 (1] - )27 Jay

_ 1\20-1) t —wl|l
[t|=Rq (FEr (®)=1) | “
i (/ +f +/) idom] = B+ B2 4 B 56)
K, K Ks

We estimate each integral separately

Bll /’TR TR (wl)’y 7=7(0-1) ’dt’ (57)
k(=

)(a—l) (-1) it —w|

—2(q-1) E_ _
- 1 ) |dt| < nZ(qzx 1) —(q—l).
n it —w|
Ky
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Similarly

dt| 209-1)
BI3 </ | < ~(a-1), 5.8
! (1 = 1) (G021 4 _ gy " 68)

For the estimate of B}? we consider two cases.
a) |¥r (t) —¥r (w1)| 2 |¥r (t)| — 1. In this case, according to [17], we get

B12</ (|t| — ) (-1) dt]
" 1) — %
%, ([Fr (¢ B — 1)@= |t — ]

(Jf = 1>V dt|
) /<|t|

— )&l [t — wl

2(g-1)
< n@=v)I+7)(g-1)—n"q] (1) (q / |4 < n@—(q—l).
n ) 1t —w|
2

b) [¥r(t)|—1 < [¥r(t) — ¥r (w1)| < c. In this case, according to the (3.1), we
have |t| =1 < |t —wy| < cj. Let us put &g := |t| — 1. According to (3.1), for
all points ¢ € L* satisfying d (¢, Ly) =< d(¢,L) holds |t| —1 =< |wq| — Ry. We
then take the discs centered at the point wy, with radius 2°¢y, s = 1,2, ...N, where
we choose a number N such that the circles Qn = {T DT —wq| =2N 60} satisfy
the conditions Qn N{t: || =Ry} # @, and Qn41 N{t: || =Ry} = @. Then,
putting K5 := Ko N {t 25 1g < |t —wq| < 2580} , we have consecutively

B2 < [ [¥r (1) = ¥r () P70 (|t - )Y e
1<2(|‘I’R(t)|_1)2(”i ¥ (1) — ¥g (w )|a(27y»)(q_1)|t—w|q

¥R (H) = ¥R (1) 1297 (1] = 12771 Jay
h Z/{ RITR ()] —1 }

|t —wq| « S - off

o B 2¢(q—1) q-1)

< B[]

00 (2580)2801—1) (80)2(1—8)(4—1) |dt|

s=1 (25 1g, )Z(qil) t—w|
2526(0=1) (g,)2(1=€) (1= 1) +2e(9—1) |dt|

- Z 2016, 2041 — w1
s=1 27w (o) = Ks|tL w|

2s(q—1)

S0 24 (1 20-1) e /e |dt|
B A" o1 / E—wl
s=1 2 K%

L ey [_l4 i(Z_) < e,
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where ¢ = ¢ (L) < 1. Therefore

B12 < -, (5.9)

and using (5.6), (5.7), (5.8), and (5.9) we obtain
Bl < 5, (5.10)
Relations (5.4), (6.5), and (5.10) yield
Ap = 17 My .

As the system of points {zj};.ﬂ:l is isolated, we get (5.1).

For the proof of (5.2) we can write the integral representations for P,(z) by

analogy to (4.1):
:——// ng dUg, z1 € L.

With similar arguments as those used for proving the relations (4.2-4.11), it is
easily shown that

= =

do
|PTZ(21)| ‘< Mn,p // g

= Zl,"m(q—l)ﬂfi

Y(Cr\U)
1
q
M dO'g
= M // g =z mla-1)+2
|C—z1|>d(z1,LR)
(11+2)

'< Mn,pd_ p (Zl, LR) .
and so, according to [17], we obtain (5.2). n

Note that the Theorems 5.1, 5.2 are sharp. This is easily seen by the example

n
G=Bh(z) =1,Pu(z) = ) (j+1)7.
=1
Remark.
As for Ky (z), My, » = 1, the proof of Theorem 2.3 also follows from Theorem 5.2.
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