On the orthogonal polynomials with weight having singularities on the boundary of regions in the complex plane

F. G. Abdullayev U. Değer

Abstract

The order of the weight of orthogonal polynomials is analyzed, when this weight function shows singularities on the boundary of a region in the complex plane.

1 Introduction

Let $G \subset \mathbb{C}$ be a finite region, with $0 \in G$, bounded by a Jordan curve $L := \partial G$, let σ be the two-dimensional Lebesgue measure, and let $h(z) \in L^1(G, d\sigma)$ be a weight function defined in G.

A system of polynomials $\{K_n(z)\}_{n=0}^{\infty}$, deg $K_n=n$, satisfying the condition

$$\iint_{G} h(z) K_{n}(z) \overline{K_{m}(z)} d\sigma_{z} = \delta_{n,m},$$

where $\delta_{n,m}$ is the Kronecker delta, is called a system of orthonormal polynomials for the pair (G,h). It is determined uniquely if the coefficient of the highest degree term is positive.

degree term is positive. Let $\{z_j\}_{j=1}^m$ be a fixed system of points on L and the weight function h(z) defined as the follows:

$$h(z) = h_0(z) \prod_{j=1}^{m} |z - z_j|^{\gamma_j},$$
 (1.1)

Received by the editors August 2007.

Communicated by F. Brackx.

2000 Mathematics Subject Classification: Prim. 30A10,30C10,Sec. 41A17.

Key words and phrases: Orthogonal polynomials, Weight function, Quasicircle, Conformal mapping, Quasiconformal mapping.

where $\gamma_i > -2$ for $j = \overline{1, m}$ and $h_0(z)$ is uniformly separated from zero in G:

$$h_0(z) \ge c > 0, \forall z \in G.$$

In this paper we continue the study of the estimation problem of the maximum norm

$$||K_n||_{C(\overline{G})} := \max\{|K_n(z)|, z \in \overline{G}\}$$

of orthogonal polynomials over a region with respect to a weight. The polynomials are defined by the pair (G,h). Therefore, the variation of the norm of these polynomials depends on the properties of the region G and of the weight h(z). Similar problems have been studied in [1],[2],[3], in case of orthogonality along a curve and in [4]-[10],[11], in case of orthogonality over a region. In addition, we also generalize this problem for arbitrary algebraic polynomials $P_n(z)$ of degree at most n.

2 Main results

Throughout this paper c, c_1 , c_2 , ... are positive, and ε , ε_1 , ε_2 , ... sufficiently small positive constants (mostly different in different relations), which, in general, depend on G.

For $\delta>0$ and $z\in\mathbb{C}$ let us put : $B(z,\delta):=\{\zeta:|\zeta-z|<\delta\}$, B:=B(0,1), $\Delta(z,\delta):=ext\ \overline{B(z,\delta)}$ (with respect to $\overline{\mathbb{C}}$), $\Delta:=extB$, $\Omega:=extG$, $\Omega(z,\delta):=\Omega\cap B(z,\delta)$; $w=\varphi(z)$ ($w=\Phi(z)$) the univalent conformal mapping of G (Ω) onto the $B(\Delta)$ normalized by $\varphi(0)=0$, $\varphi'(0)>0$ ($\Phi(\infty)=\infty$, $\Phi'(\infty)>0$), $\psi:=\varphi^{-1}$ ($\Psi:=\Phi^{-1}$).

Definition 2.1. A bounded Jordan region G is called a k-quasidisk, $0 \le k < 1$, if the conformal mapping ψ can be extended to a K-quasiconformal, $K = \frac{1+k}{1-k}$, homeomorphism of the plane $\overline{\mathbb{C}}$ onto $\overline{\mathbb{C}}$. In that case the curve $L := \partial G$ is called a k-quasicircle. The region G (resp. curve L) is called a quasidisk (resp. quasicircle), if it is a k-quasidisk (k-quasicircle) for some $0 \le k < 1$.

Theorem A[9]. Let G be a k -quasidisk for some $0 \le k < 1$, and let the weight function h(z) be defined by (1.1) with $\gamma_j = 0$, $j = \overline{1, m}$. Then, for every n = 1, 2, ...

$$||K_n||_{C(\overline{G})} \leq c_1 n^{1+k}$$
.

Definition 2.2. We say that $G \in Q_{\alpha}$, $0 < \alpha \le 1$, if

- a) L is a quasicircle,
- b) Φ satisfies the Lipschitz condition of order α on $\overline{\Omega}$: $\Phi \in Lip_{\alpha}(\overline{\Omega})$.

Theorem B[9]. Let $G \in Q_{\alpha}$, for some $0 < \alpha \le 1$ and let the weight function h(z) be defined by (1.1) with $\gamma_j = 0$, $j = \overline{1, m}$,

1) if $\alpha \geq \frac{1}{2}$, then for every n = 1, 2, ...

$$||K_n||_{C(\overline{G})} \leq c_2 n^{\frac{1}{\alpha}},$$

2) if $\alpha < \frac{1}{2}$, then there exist a number $\delta = \delta(\alpha, G)$, $\delta \in [1, 2]$, such that for every n = 1, 2, ...

$$||K_n||_{C(\overline{G})} \le c_2' n^{\delta}. \tag{2.1}$$

Now we assume that the weight function h(z) defined as (1.1) where $\gamma_j \neq 0$, for some $j \geq 1$. Note that throughout this paper we use the same sequence of singular points $\{z_j\}_{j=1}^m$ defined by (1.1).

We now state two theorems the proof of which is given in the next section.

Theorem 2.1. Let G be a k -quasidisk for some $0 \le k < 1$, and let the weight function h(z) be defined by (1.1). Then, for each point z_i , $j = \overline{1, m}$, and for every n = 1, 2, ...

$$|K_n(z_j)| \le c_3 n^{(1+\frac{\gamma_j}{2})(1+k)}.$$

Corollary 2.2. *Under the same conditions as in Theorem 2. 1, one has*

$$||K_n||_{C(\overline{G})} \le c_4 n^{(1+\frac{\gamma}{2})(1+k)},$$

$$\gamma := \max \left\{ 0; \ \gamma_j, \ j = \overline{1, m} \right\}, \ n = 1, 2, \dots.$$

Theorem 2.3. Let $G \in Q_{\alpha}$, for some $0 < \alpha \le 1$, and let the weight function h(z) be defined by (1.1). Then, for each point z_j , $j = \overline{1, m}$, and for every n = 1, 2, ...

$$\left|K_n(z_j)\right| \leq c_5 n^{\left(1+\frac{\gamma_j}{2}\right)\mu},$$

where

$$\mu = \begin{cases} \frac{1}{\alpha}, & \text{if } \alpha \ge \frac{1}{2}, \\ \delta, & \text{if } \alpha < \frac{1}{2} \end{cases}$$

and δ is defined as in (2.1).

Corollary 2.4. *Under the same conditions as in Theorem 2. 3, one has*

$$||K_n||_{C(\overline{G})} \le c_4 n^{(1+\frac{\gamma}{2})\mu},$$

$$\gamma := \max \left\{ 0; \ \gamma_j, \ j = \overline{1, m} \right\}, \ n = 1, 2, \dots$$

In our previous work [7, Prop. 1-3], we discussed the sharpness of results similar to those contained in Theorems 2.1, 2.3. Therefore, using a similar reasoning we can also determine the sharpness in the Theorems 2.1, 2.3.

Definition 2.3. Let $z \in L$ and $v \in (0,1)$ be fixed. We say that $\Omega \in Q(z;v)$, if L is a quasicircle and there exists r > 0 such that a closed circular sector $S(z;r,v) := \{\zeta : \zeta = z + re^{i\theta}, 0 \le \theta_0 < \theta < \theta_0 + v\}$ of radius r and opening $v\pi$ lies in \overline{G} with vertex at z.

Definition 2.4. Let $\nu_1, ..., \nu_m$ and α , with $0 < \nu_1, ..., \nu_m < \alpha \le 1$, be fixed. We say that $\Omega \in Q_{\alpha}(\zeta_1, \zeta_2, ..., \zeta_m; \nu_1, ..., \nu_m)$, if for every $j, \Omega \in Q(\zeta_j; \nu_j)$ and $\Phi \in Lip_{\alpha}(\overline{\Omega} \setminus \{\zeta_j\})$.

Let $\Omega \in Q_{\alpha}\left(\zeta_{1},\zeta_{2},...,\zeta_{m};\nu_{1},...,\nu_{m}\right)$, $0 < \nu_{1},...,\nu_{m} < \alpha \leq 1$. Assume that the system of points $\left\{z_{j}\right\}$, $j = \overline{1,m}$ and $\left\{\zeta_{j}\right\}$, $j = \overline{1,m}$ mentioned in (1.1) and in Definition 2.4 respectively, are identically ordered on L, i. e. $z_{j} \equiv \zeta_{j}$, $j = \overline{1,m}$. In [9], we showed that if the interference condition

$$1 + \frac{\gamma_j}{2} = \frac{1}{\alpha(2 - \nu_j)}$$

is satisfied for each singular point $\{z_j\}$, $j=\overline{1,m}$, of the weight function and the boundary contour, then the growth rate of the polynomials $K_n(z)$ in \overline{G} does not depend on whether or not the weight function h(z) and the boundary contour L show singularities. In [10], one of the authors investigated this problem in the case where

$$1 + \frac{\gamma_j}{2} < \frac{1}{\alpha(2 - \nu_j)}.\tag{2.2}$$

In the present paper we also investigate the case when the opposite of (2.2) holds.

Theorem 2.5. Let $\Omega \in Q_{\alpha}(z_1, z_2, ..., z_m; \nu_1, ..., \nu_m)$, for some $0 < \nu_j < 1$ and $\alpha(2 - \nu_j) \ge 1$, $j = \overline{1, m}$, and let h(z) be defined by (1.1). If

$$1 + \frac{\gamma_j}{2} > \frac{1}{\alpha(2 - \nu_j)} \tag{2.3}$$

holds for each point z_j , $j = \overline{1,m}$, then for each point z_j , $j = \overline{1,m}$, and for every n = 1, 2, ...

$$\max_{z \in \overline{G}} \left(\prod_{j=1}^{m} |z - z_j|^{\widetilde{\mu}_j} |K_n(z)| \right) \le c_4 n^{1/\alpha},$$
$$|K_n(z_i)| \le c_5 n^{\widetilde{s}_j},$$

where

$$\widetilde{\mu}_j := 1 + \frac{\gamma_j}{2} - \frac{1}{\alpha(2 - \nu_j)},$$

$$\widetilde{s}_j := \left(1 + \frac{\gamma_j}{2}\right)(2 - \nu_j), \ j = \overline{1, m}.$$

The conditions (2.3) might be satisfied when $\gamma_j > 0$, $j = \overline{1,m}$. For that reason we will call (2.3) the algebraic zero conditions of order $\mu_j = \alpha(2 - \nu_j) \left(1 + \frac{\gamma_j}{2}\right) - 1$.

3 Some auxiliary results

For a > 0 and b > 0 we shall use the notations " $a \prec b$ " (order inequality) if $a \leq cb$, and " $a \approx b$ " if $c_1a \leq b \leq c_2a$ for some constants c, c_1, c_2 respectively.

Let G be a quasidisk. Then there exists a quasiconformal reflection y(.) across L such that $y(G) = \Omega$, $y(\Omega) = G$ and y(.) fixes the points of L. The quasiconformal reflection y(.) is such that it satisfies the following condition [12, p. 26], [13]:

$$|y(\zeta) - z| \approx |\zeta - z|, z \in L, \varepsilon < |\zeta| < \frac{1}{\varepsilon},$$

$$|y_{\overline{\zeta}}| \approx |y_{\zeta}| \approx 1, \varepsilon < |\zeta| < \frac{1}{\varepsilon},$$

$$|y_{\overline{\zeta}}| \approx |y(\zeta)|^{2}, |\zeta| < \varepsilon, |y_{\overline{\zeta}}| \approx |\zeta|^{-2}, |\zeta| > \frac{1}{\varepsilon}.$$
(3.1)

For t > 0, let $L_t := \{z : |\varphi(z)| = t, if \ t < 1, \ |\Phi(z)| = t, if \ t > 1\}$, $G_t := intL_t$, $\Omega_t := extL_t$. For R > 1 let $L^* := y(L_R)$, $G^* := intL^*$, $\Omega^* := extL^*$; $w = \Phi_R(z)$ be the conformal mapping of Ω^* onto the Δ normalized by $\Phi_R(\infty) = \infty$, $\Phi_R'(\infty) > 0$; $\Psi_R := \Phi_R^{-1}$. For t > 1, let $L_t^* := \{z : |\Phi_R(z)| = t\}$, $G_t^* := intL_t^*$, $\Omega_t^* := extL_t^*$; d(z, L) := dist(z, L).

According to [14], for all $z \in L^*$ and $t \in L$ such that |z - t| = d(z, L) we have

$$d(z,L) \approx d(t,L_R) \approx d(z,L_R). \tag{3.2}$$

Lemma 3.1. [4]. Let G be a quasidisk, $z_1 \in L$, $z_2, z_3 \in \Omega \cap \{z : |z - z_1| \prec d(z_1, L_{r_0})\}$; $w_j = \Phi(z_j), j = 1, 2, 3$. Then

- a) The statements $|z_1 z_2| \prec |z_1 z_3|$ and $|w_1 w_2| \prec |w_1 w_3|$ are equivalent. So are $|z_1 z_2| \approx |z_1 z_3|$ and $|w_1 w_2| \approx |w_1 w_3|$.
- b) If $|z_1 z_2| \prec |z_1 z_3|$, then

$$\left|\frac{w_1-w_3}{w_1-w_2}\right|^{\varepsilon} \prec \left|\frac{z_1-z_3}{z_1-z_2}\right| \prec \left|\frac{w_1-w_3}{w_1-w_2}\right|^{c},$$

where $0 < r_0 < 1$ a constant, depending on G and k.

Lemma 3.2. *Let* G *be a* k *-quasidisk for some* $0 \le k < 1$. *Then*

$$|\Psi(w_1) - \Psi(w_2)| > |w_1 - w_2|^{1+k}$$
,

for all $w_1, w_2 \in \overline{\Omega}'$.

This fact follows from of an appropriate result for the mapping $f \in \Sigma(k)$ [15, p. 287] and the estimate for the functions Ψ [12, Th. 2. 8].

Let $A_p(h, G)$, p > 0 denote the class of functions f which are analytic in G and satisfy the condition

$$||f||_{A_p} := ||f||_{A_p(h,G)} := \left(\iint_G h(z) |f(z)|^p d\sigma_z \right)^{1/p} < \infty.$$

Lemma 3.3. [8]. Let G be a quasidisk and let $P_n(z)$, deg $P_n \le n$, n = 1, 2, ..., be an arbitrary polynomial and let the weight function h(z) satisfy the condition (1.1). Then, for any R > 1, p > 0 and n = 1, 2, ... one has

$$||P_n||_{A_p(h,G_{1+c(R-1)})} \le c_6 R^{n+\frac{1}{p}} ||P_n||_{A_p(h,G)}, \tag{3.3}$$

where c, c_1 are independent of n and R.

Lemma 3.4. Let G be a quasidisk; $z_1 \in L$, and let $z \in L^* := L^* \left(1 + \frac{1}{n}\right)$, n = 1, 2, ..., such that $d(z_1, L^*) = |z_1 - z|$. Then, the relation

$$\{\zeta : |\zeta - z| < c_1 |z_1 - z|\} \subset G$$

holds for some constant $c_1 = c_1(G, D, K)$, $0 < c_1 < 1$.

Proof. Let $d(z,L) = |z_2 - z| \le |z - z_1|$, $z_2 \in L$. Let $\Gamma = \Gamma(z,z_2;z^*,z_1,G_{R_0})$ be a family of locally rectifiable curves and separating z and z_2 from z_1 and $z^* \in L_{R_0}$ in G_{R_0} , where $R_0 = R_0(G,\varphi,y) > 1$ is a fixed constant. Using the quasiconformal reflection y(.) we can extend the function φ to a quasiconformal homeomorphism $\widetilde{\varphi}: \overline{\mathbb{C}} \to \overline{\mathbb{C}}, \ \widetilde{\varphi}(0) = 0, \ \widetilde{\varphi}(\infty) = \infty$. Let $\Gamma' = \widetilde{\varphi}(\Gamma)$. Then, it is easily shown that the module $m(\Gamma)$ and $m(\Gamma')$ satisfy

$$m\left(\Gamma\right) \ge \frac{1}{2\pi} \ln c_2 \left| \frac{z_1 - z}{z_2 - z} \right|,\tag{3.4}$$

$$m\left(\Gamma'\right) \leq \frac{1}{2\pi} \ln c_3 \left| \frac{\varphi\left(z_1\right) - \varphi\left(z\right)}{\varphi\left(z_2\right) - \varphi\left(z\right)} \right|,\tag{3.5}$$

where $c_j = c_j(G, R_0)$, j = 2, 3, are independent of z, z_1, z_2 . As $|z_2 - z| \le |z_1 - z|$, according to Lemma 3.1, we get $|\varphi(z_2) - \varphi(z)| \prec |\varphi(z_1) - \varphi(z)|$. On the other hand, let $d(\varphi(z_1), \varphi(L^*)) = |\varphi(z_1) - t_1|$, $t_1 \in \varphi(L^*)$ and $d(\varphi(z), \partial B) = |\varphi(z) - t_2|$, $t_2 \in \partial B$. We then obtain $|\varphi(z_1) - t_1| \asymp |\varphi(z_1) - \varphi(z)| \asymp |\varphi(z_2) - \varphi(z)|$. Hence

$$m\left(\Gamma'\right) \leq \frac{1}{2\pi} \ln c_3.c_4 = c_5.$$

So, considering the modules to be quasi-invariant [13, p. 14], it follows from (3.4) and (3.5) that

$$c_5 \geq m\left(\Gamma'\right) \geq C^{-2}(K)m\left(\Gamma\right) \geq \frac{1}{C^2(K)2\pi} \ln c_2 \left| \frac{z_1 - z}{z_2 - z} \right|,$$

where C(K) is the quasiconformality coefficient of the reflection y(.). Then,

$$|z_2 - z| \ge c_2 e^{-2\pi C^2(K)c_5} |z_1 - z|.$$

Taking c_1 as

$$c_1 := \frac{1}{2}c_2e^{-2\pi C^2(K)c_5}$$

completes the proof.

4 Proof of Theorems 2.1 and 2.3

Proof. We first give the proof of Theorem 2. 1. Without loss of generality we may take j=1. As L is a quasicircle, we also have that each L_R , $R=1+\frac{1}{n}$, is also a quasicircle. Therefore, we can construct a c(K)-quasiconformal reflection $y_R(z)$, $y_R(0)=\infty$, across L_R such that $y_R(G_R)=\Omega_R$, $y_R(\Omega_R)=G_R$ and $y_R(.)$ fixes the points of L that satisfy conditions (3.1) rewritten for $y_R(z)$. By using $y_R(z)$ constructed in this way, we can write the following integral representation for $K_n(z)$ [12, p. 105]

$$K_{n}(z) = -\frac{1}{\pi} \iint_{G_{R}} \frac{K_{n}(\zeta) y_{R,\zeta}}{(y_{R}(\zeta) - z)^{2}} d\sigma_{\zeta}, \quad z \in G_{R}.$$

$$(4.1)$$

We put $U_{\varepsilon}(z) := \{\zeta : |\zeta - z| < \varepsilon\}$, $\varepsilon > 0$; without loss of generality we may take $U_{\varepsilon} := U_{\varepsilon}(0) \subset G^*$. For $z_1 \in L$ we have

$$|K_{n}\left(z_{1}\right)| \leq \frac{1}{\pi} \iint_{U_{F}} \frac{|K_{n}\left(\zeta\right)| \left|y_{R,\overline{\zeta}}\right|}{\left|y_{R}\left(\zeta\right)-z_{1}\right|^{2}} d\sigma_{\zeta} + \frac{1}{\pi} \iint_{G_{R}} \frac{|K_{n}\left(\zeta\right)| \left|y_{R,\overline{\zeta}}\right|}{\left|y_{R}\left(\zeta\right)-z_{1}\right|^{2}} d\sigma_{\zeta} =: J_{1} + J_{2}. \quad (4.2)$$

To estimate the integral J_1 , we multiply the numerator and denominator of the integrand by $\sqrt{h(\zeta)}$, and applying the Holder inequality we obtain

$$J_{1}^{2} \leq \iint_{U_{\varepsilon}} h(\zeta) |K_{n}(\zeta)|^{2} d\sigma_{\zeta} \cdot \iint_{U_{\varepsilon}} \frac{\left|y_{R,\overline{\zeta}}\right|^{2}}{h(\zeta) |y_{R}(\zeta) - z_{1}|^{4}} d\sigma_{\zeta}$$

$$\prec \iint_{U_{\varepsilon}} \frac{\left|y_{R,\overline{\zeta}}\right|^{2}}{\left|\zeta - z_{1}\right|^{\gamma_{1}} |y_{R}(\zeta) - z_{1}|^{4}} d\sigma_{\zeta} \approx \iint_{U_{\varepsilon}} \frac{\left|y_{R,\overline{\zeta}}\right|^{2}}{\left|y_{R}(\zeta) - z_{1}\right|^{4}} d\sigma_{\zeta}.$$

According to (3.1) $\left|y_{R,\overline{\zeta}}\right| \simeq \left|y_R(\zeta)\right|^2$, for all $\zeta \in U_{\varepsilon}$, because of $|\zeta - z_1| \geq \varepsilon$, $|y_R(\zeta) - z| \simeq |y_R(\zeta)|$ for $z \in L$ and $\zeta \in U_{\varepsilon}$. On the other hand, if $J_{y,R} := \left|y_{R,\zeta}\right|^2 - \left|y_{R,\overline{\zeta}}\right|^2$ is the Jacobian of the reflection $y_R(\zeta)$, we obtain

$$\left|J_{y,R}\right| \succ \left|y_{R,\overline{\zeta}}\right|^2$$

as in [9]. Then, we can find

$$J_1^2 \prec \iint_{U_{\varepsilon}} \frac{\left| y_{R,\overline{\zeta}} \right|^2}{\left| J_{y,R} \right| \left| \zeta - z_1 \right|^4} d\sigma_{\zeta} \prec \iint_{\left| \zeta - z_1 \right| \ge c_1} \frac{d\sigma_{\zeta}}{\left| \zeta - z_1 \right|^4} \prec 1. \tag{4.3}$$

For the integral I_2 we have

$$J_{2}^{2} = \iint_{G_{R} \setminus U_{\varepsilon}} \frac{\left| y_{R,\overline{\zeta}} \right|^{2} d\sigma_{\zeta}}{\left| y_{R}\left(\zeta\right) - z_{1} \right|^{4+\gamma_{1}}} \cdot \iint_{G_{R} \setminus U_{\varepsilon}} \left| y_{R}\left(\zeta\right) - z_{1} \right|^{\gamma_{1}} \left| K_{n}\left(\zeta\right) \right|^{2} d\sigma_{\zeta} =: J_{21} \cdot J_{22}. \quad (4.4)$$

First we establish that

$$|\zeta - z_1| \prec |y_R(\zeta) - z_1| \prec |\zeta - z_1| + d(z_1, L_R)$$
 (4.5)

for all $\zeta \in G_R \setminus U_{\varepsilon}$ and $z_1 \in L$.

Let $|z_1 - t| = d(z_1, L_R)$, $t \in L_R$. According to (3.1) we have $c_1 \le |y_{R,\overline{\zeta}}| \le c_2$ and $c_3 |\zeta - z| \le |y_R(\zeta) - z| \le c_4 |\zeta - z|$, for all $\zeta \in G_R \setminus U_{\varepsilon}$ and $z \in L_R$. Then

$$|\zeta - z_1| \le |\zeta - t| + |y_R(\zeta) - t| + |y_R(\zeta) - z_1|$$

 $\le (c_3^{-1} + 1) |y_R(\zeta) - t| + |y_R(\zeta) - z_1|$
 $\prec |y_R(\zeta) - z_1|.$

On the other hand

$$|y_R(\zeta) - z_1| \le |y_R(\zeta) - t| + |t - \zeta| + |\zeta - z_1|$$

 $\le (c_4 + 1)|t - \zeta| + |\zeta - z_1| < |t - \zeta| + |\zeta - z_1|.$

Using (4.5), we obtain for the integral J_{21}

$$J_{21} \prec \iint_{y(G_R \setminus U_{\varepsilon})} \frac{d\sigma_{\zeta}}{|\zeta - z_1|^{4+\gamma_1}}$$

$$\leq \iint_{|\zeta - z_1| \geq d(z_1, L_R)} \frac{d\sigma_{\zeta}}{|\zeta - z_1|^{4+\gamma_1}} \prec d^{-(\gamma_1 + 2)}(z_1, L_R).$$
(4.6)

Let $\gamma > 0$. If $\zeta \in U(z_1) =: \{\xi : |\xi - z_1| \le d(z_1, L_R)\}$, then using (4.5), we have $|y_R(\zeta) - z_1| \le |\zeta - z_1|$. Therefore, according to Lemma 3.3, we obtain

$$J_{22} = \iint_{G_{R}\setminus(U_{\varepsilon}\cup U(z_{1}))} |y_{R}(\zeta) - z_{1}|^{\gamma_{1}} |K_{n}(\zeta)|^{2} d\sigma_{\zeta}$$

$$+ \iint_{U(z_{1})} |y_{R}(\zeta) - z_{1}|^{\gamma_{1}} |K_{n}(\zeta)|^{2} d\sigma_{\zeta}$$

$$\prec \iint_{G_{R}\setminus(U_{\varepsilon}\cup U(z_{1}))} |\zeta - z_{1}|^{\gamma_{1}} |K_{n}(\zeta)|^{2} d\sigma_{\zeta}$$

$$+ d^{\gamma_{1}}(z_{1}, L_{R}) \iint_{U(z_{1})} |K_{n}(z_{1})|^{2} d\sigma_{\zeta}$$

$$\prec \iint_{G_{R}} h(\zeta) |K_{n}(\zeta)|^{2} d\sigma_{\zeta}$$

$$+ d^{\gamma_{1}}(z_{1}, L_{R}) \cdot \max_{\zeta \in \overline{U(z_{1})}} |K_{n}(\zeta)|^{2} \cdot mesU(z_{1})$$

$$\prec 1 + \max_{\zeta \in \overline{U(z_{1})}} |K_{n}(\zeta)|^{2} \cdot d^{2+\gamma_{1}}(z_{1}, L_{R}) .$$

$$(4.7)$$

Using the lemma of Bernstein-Walsh [16] and Lemma 3.4 we obtain

$$\max_{\zeta \in \overline{U(z_{1})}} |K_{n}\left(\zeta\right)| \leq \max_{\zeta \in \overline{G}_{R}} |K_{n}\left(\zeta\right)| \prec \max_{\zeta \in \overline{G}} |K_{n}\left(\zeta\right)| \prec \max_{\zeta \in \overline{G}^{*}} |K_{n}\left(\zeta\right)|. \tag{4.8}$$

Let $\zeta \in L^*$ be any point. Applying the Mean Value Theorem to the polynomial $K_n(z)$ in the disc $|z-\zeta| < c_1 d(z_1,L^*)$, with the constant $c_1 < 1$ taken from Lemma 3.4, we have

$$|K_{n}(\zeta)|^{2} \leq \frac{1}{\pi c_{1}^{2} d^{2}(z_{1}, L^{*})} \iint_{|z-\zeta| < c_{1} d(z_{1}, L^{*})} |K_{n}(z)|^{2} d\sigma_{z}$$

$$\prec \frac{1}{d^{2}(z_{1}, L^{*})} \iint_{|z-\zeta| < c_{1} d(z_{1}, L^{*})} \frac{|z-z_{1}|^{\gamma_{1}} |K_{n}(z)|^{2}}{|z-z_{1}|^{\gamma_{1}}} d\sigma_{z}$$

$$\prec \frac{1}{d^{2}(z_{1}, L^{*})} \left[\frac{1}{(1-c_{1}) d(z_{1}, L^{*})} \right]^{\gamma_{1}} \iint_{|z-\zeta| < c_{1} d(z_{1}, L^{*})} |z-z_{1}|^{\gamma_{1}} |K_{n}(z)|^{2} d\sigma_{z}.$$

Thus,

$$|K_n(\zeta)|^2 \prec d^{-(2+\gamma_1)}(z_1, L^*),$$

by Lemma 3.3. From (4.7), (4.8) and (3.2) for all p > 0 we get

$$J_{22} \prec 1 + d^{2+\gamma_1}(z_1, L_R) \cdot d^{-(2+\gamma_1)}(z_1, L^*) \prec 1$$
 (4.9)

If $-2<\gamma_1\le 0$, then $|y_R(\zeta)-z_1|^{\gamma_1}\prec |\zeta-z_1|^{\gamma_1}$, and, consequently, according to Lemma 3.3, we have

$$J_{22} \prec 1.$$
 (4.10)

Relations (4.2), (4.3), (4.4), (4.6)-(4.10) yield

$$|K_n(z_1)| \prec d^{-\left(1+\frac{\gamma_1}{2}\right)}(z_1, L_R),$$
 (4.11)

By Lemma 3.2 the proof of Theorem 2.1 is completed.

The proof of Theorem 2.3 is obtained if we combine the following estimate with (4.11):

$$d\left(z_{1},L_{R}\right)\succ\left(R-1\right)^{\mu},$$

where $\mu = \frac{1}{\alpha}$, if $\alpha \ge \frac{1}{2}$ and $\mu = \delta$, if $\alpha < \frac{1}{2}$ with $\delta = \delta(\alpha, G)$, $1 \le \delta \le 2$, a certain number.

5 Case of arbitrary polynomials

Theorems 2.1- 2.5 can be generalized to arbitrary algebraic polynomials. Let $P_n(z)$ be an arbitrary polynomial of degree at most n and let $M_{n,p} := \|P_n\|_{A_n(h,G)}$.

Theorem 5.1. Let G be a k-quasidisk for some $0 \le k < 1$, and let the weight function h(z) be defined by (1.1). Then, for each point $z_j \in L$, $j = \overline{1, m}$, and for every n = 1, 2, ...

$$|P_n(z_j)| \le c_7 n^{\frac{(2+\gamma_j)(1+k)}{p}} M_{n,p}.$$

Theorem 5.2. Let $G \in Q_{\alpha}$, for some $0 < \alpha \le 1$, and let the weight function h(z) be defined by (1.1). Then, for each point $z_i \in L$, $j = \overline{1, m}$, and for every n = 1, 2, ...

$$|P_n(z_j)| \leq c_8 n^{\frac{(2+\gamma_j)\mu}{p}} M_{n,p},$$

where μ defined as in (2.1).

Theorem 5.3. Let p > 1, $\Omega \in Q_{\alpha}(z_1, z_2, ..., z_m; \nu_1, ..., \nu_m)$ for some $0 < \nu_j < 1$ and $\alpha(2 - \nu_j) \ge 1$, and let h(z) be defined by (1.1). If

$$1 + \frac{\gamma_j}{2} > \frac{1}{\alpha(2 - \nu_i)}$$

holds for each point z_i , $j = \overline{1, m}$, then, for every n = 1, 2, ...

$$\max_{z \in \overline{G}} \left(\prod_{j=1}^{m} |z - z_j|^{\mu_j^*} |P_n(z)| \right) \le c_9 n^{2/\alpha p} M_{n,p}, \tag{5.1}$$

$$|P_n(z_j)| \le c_{10} n^{s_j^*} M_{n,p},$$
 (5.2)

where

$$\mu_j^* := \frac{2 + \gamma_j}{p} - \frac{2}{p\alpha(2 - \nu_j)}, \ s_j^* := \frac{(2 + \gamma_j)(2 - \nu_j)}{p}, \ j = \overline{1, m}.$$

The proofs of the Theorems 5.1-5.2 are completely similar to the proofs of the Theorems 2.1-2.3.

Proof of Theorem 5. 3. Let us introduce the Blaschke functions with respect to the singular points of the weight functions h(z):

$$B_R(z) = \prod_{j=1}^m B_R^j(z) := \prod_{j=1}^m \frac{\Phi_R(z) - \Phi_R(z_j)}{1 - \overline{\Phi_R(z_j)}\Phi_R(z)}$$
, $z \in \Omega^*$.

It is easily seen that $B_R(z_j)=0$ and $|B_R(z)|\equiv 1$ at $z\in L^*$. As the system of points $\{z_j\}_{j=1}^m$ on L is finite, we may assume without loss of generality that j=1, $\mu^*:=\mu_1^*; s^*:=s_1^*$ For R>1 we put $R_1:=1+\frac{R-1}{2}$, $\widetilde{L}^*:=y(L_R)$, $w=\Phi_R(z)$, $w_1=\Phi_R(z_1)$, and

$$h_{R}\left(w\right):=\left[\frac{\Psi_{R}\left(w\right)-\Psi_{R}\left(w_{1}\right)}{wB_{R}\left(\Psi_{R}\left(w\right)\right)}\right]^{\mu^{*}}\frac{P_{n}\left(\Psi_{R}\left(w\right)\right)}{w^{n+1}}.$$

Let $z \in L$. The Cauchy integral representation for an unbounded region yields

$$h_{R}\left(w\right) = -\frac{1}{2\pi i} \int_{\left|t\right| = R_{1}} h_{R}\left(t\right) \frac{dt}{t - w}.$$

As for all $|t| = R_1 > 1$, $|B_R(\Psi_R(t))| \ge 1$, $|t|^{n+1} = R_1^{n+1} > 1$, we obtain

$$A_{n} := |\Psi_{R}(w) - \Psi_{R}(w_{1})|^{\mu^{*}} |P_{n}(\Psi_{R}(w))|$$

$$\leq |wB_{R}(\Psi_{R}(w))|^{\mu^{*}} |w|^{n+1} \frac{1}{2\pi} \int_{|t|=R_{1}} |\Psi_{R}(t) - \Psi_{R}(w_{1})|^{\mu^{*}} |P_{n}(\Psi_{R}(t))| \frac{|dt|}{|t-w|}. \quad (5.3)$$

As

$$\begin{aligned} \left| wB_R^1(z) \right| &= \left| w \cdot \frac{w - \Phi_R(z_1)}{\frac{1}{\Phi_R(z_1)} - w} \cdot \frac{1}{\overline{\Phi_R(z_1)}} \right| \\ &= \left| \frac{w}{\overline{\Phi_R(z_1)}} \right| \cdot \left| \frac{w - \Phi_R(z_1)}{\overline{\Phi_R(z_1)} - w} \right| = \left| \frac{w}{\overline{\Phi_R(z_1)}} \right|, \end{aligned}$$

we obtain from (3.2) that

$$|wB_{R}(\Psi_{R}(w))|^{\mu^{*}} \prec 1, \quad |w|^{n+1} \prec 1.$$

So, from (5.3) it follows that

$$A_{n} \prec \int_{|t|=R_{1}} \left| \Psi_{R}\left(t\right) - \Psi_{R}\left(w_{1}\right) \right|^{\mu^{*}} \left| P_{n}\left(\Psi_{R}\left(t\right)\right) \right| \frac{|dt|}{|t-w|}.$$

To estimate the integral of at the right hand side, we multiply the numerator and denominator of integrand by $|\Psi_R(t) - \Psi_R(w_1)|^{\frac{\gamma}{p}} |\Psi_R'(t)|^{\frac{2}{p}}$; then applying the Holder inequality we obtain

$$A_{n} \prec \left(\int_{|t|=R_{1}} |\Psi_{R}(t) - \Psi_{R}(w_{1})|^{\gamma} |P_{n}(\Psi_{R}(t))|^{p} |\Psi'_{R}(t)|^{2p} |dt| \right)^{\frac{1}{p}}$$

$$\times \left(\int_{|t|=R_{1}} \frac{|\Psi_{R}(t) - \Psi_{R}(w_{1})|^{\mu^{*}q - \gamma(q-1)}}{|\Psi'_{R}(t)|^{2(q-1)} |t - w|^{2q}} |dt| \right)^{\frac{1}{q}}$$

$$= : A_{n}^{1} \cdot B_{n}^{1}.$$
(5.4)

Let

$$f_{n}\left(t\right):=\left(\Psi_{R}\left(t\right)-\Psi_{R}\left(w_{1}\right)\right)^{\frac{\gamma}{p}}P_{n}\left(\Psi_{R}\left(t\right)\right)\left(\Psi_{R}'\left(t\right)\right)^{\frac{2}{p}}.$$

Now we partition the circle $|t| = R_1$ into n equal parts δ_n with $mes(\delta_n) = \frac{2\pi R_1}{n}$; applying the Mean Value Theorem to the integral A_n^1 we get

$$A_{n}^{1} = \sum_{k=1}^{n} \int_{\delta_{k}} |f_{n}(t)|^{p} |dt| = \sum_{k=1}^{n} \left| f_{n}\left(t_{k}^{'}\right) \right|^{p} mes(\delta_{k}), \ t_{k}^{'} \in \delta_{k}.$$

On the other hand, applying the mean value estimate

$$\left|f_n\left(t_k'\right)\right|^p \leq \frac{1}{\pi\left(1-\left|t_k'\right|\right)^2} \iint_{\left|\xi-t_k'\right|<1-\left|t_k'\right|} \left|f_n\left(\xi\right)\right|^p d\sigma_{\xi},$$

we obtain

$$A_{n}^{1} \prec \sum_{k=1}^{n} \frac{mes(\delta_{k})}{\pi \left(1-\left|t_{k}^{\prime}\right|\right)^{2}} \iint_{\left|\xi-t_{k}^{\prime}\right| < 1-\left|t_{k}^{\prime}\right|} \left|f_{n}\left(\xi\right)\right|^{p} d\sigma_{\xi}, \quad t_{k}^{\prime} \in \delta_{k}.$$

Taking into account that at most two of the discs with origin at the points t'_k are intersecting, we obtain

$$A_n^1 \prec \frac{mes\delta_1}{\left(1 - \left|t_1'\right|\right)^2} \iint_{1 < |\xi| < R_1} \left|f_n\left(\xi\right)\right|^p d\sigma_{\xi} \prec n \iint_{1 < |\xi| < R_1} \left|f_n\left(\xi\right)\right|^p d\sigma_{\xi}.$$

According to (3.3) we obtain for A_n^1 :

$$A_n^1 \prec n \iint_{G_{R_1}^* \backslash G^*} |z - z_1|^{\gamma} |P_n(z)|^p d\sigma_z \prec n \cdot M_{n,p}^p.$$

$$(5.5)$$

In order to estimate the integral B_n^1 , we take into account the estimate for the functions Ψ_R (see e. g. [12, Th. 2. 8]). We put

$$\{t: |t| = R_1\} = \bigcup_{j=1}^3 K_j,$$

where

$$K_1 := \{t : |t| = R_1, |t - w| < \varepsilon_1\},\$$
 $K_2 := \{t : |t| = R_1, |t - w_1| < \varepsilon_2\},\$
 $K_3 := \{t : |t| = R_1, |t - w| \ge \varepsilon_1, |t - w_1| \ge \varepsilon_2\},\$
 $w = \Phi(z), w_1 = \Phi(z_1).$

Then we have

$$B_{n}^{1} \prec \int_{|t|=R_{1}} \frac{|\Psi_{R}(t) - \Psi_{R}(w_{1})|^{\mu^{*}q - \gamma(q-1)} (|t|-1)^{2(q-1)}}{(|\Psi_{R}(t)|-1)^{2(q-1)}} \frac{|dt|}{|t-w|^{q}}$$

$$= \left(\int_{K_{1}} + \int_{K_{2}} + \int_{K_{3}} \right) [idem] =: B_{n}^{11} + B_{n}^{12} + B_{n}^{13}.$$
(5.6)

We estimate each integral separately

$$B_{n}^{11} \prec \int_{K_{1}} \frac{\left|\Psi_{R}(t) - \Psi_{R}(w_{1})\right|^{\mu^{*}q - \gamma(q-1)}}{(|t| - 1)^{\left(\frac{1}{\alpha} - 1\right)2(q-1)}} \frac{|dt|}{|t - w|^{q}}$$

$$\prec \left(\frac{1}{n}\right)^{-2(q-1)\left(\frac{1}{\alpha} - 1\right)} \int_{K_{1}} \frac{|dt|}{|t - w|^{q}} \prec n^{\frac{2(q-1)}{\alpha} - (q-1)}.$$

$$(5.7)$$

Similarly

$$B_n^{13} \prec \int_{K_2} \frac{|dt|}{(|t|-1)^{\left(\frac{1}{\alpha}-1\right)2(q-1)} |t-w|^q} \prec n^{\frac{2(q-1)}{\alpha}-(q-1)}.$$
 (5.8)

For the estimate of B_n^{12} we consider two cases.

a) $|\Psi_R(t) - \Psi_R(w_1)| \leq |\Psi_R(t)| - 1$. In this case, according to [17], we get

$$\begin{split} B_{n}^{12} \prec \int_{K_{2}} \frac{(|t|-1)^{2(q-1)}}{(|\Psi_{R}(t)|-1)^{(2+\gamma)(q-1)-\mu^{*}q}} \frac{|dt|}{|t-w|^{q}} \\ \prec \int_{K_{2}} \frac{(|t|-1)^{2(q-1)}}{(|t|-1)^{(2-\nu_{j})[(2+\gamma)(q-1)-\mu^{*}q]}} \frac{|dt|}{|t-w|^{q}} \\ \prec n^{(2-\nu_{j})[(2+\gamma)(q-1)-\mu^{*}q]} \left(\frac{1}{n}\right)^{2(q-1)} \int_{K_{2}} \frac{|dt|}{|t-w|^{q}} \prec n^{\frac{2(q-1)}{\alpha}-(q-1)}. \end{split}$$

b) $|\Psi_R(t)| - 1 < |\Psi_R(t) - \Psi_R(w_1)| < c$. In this case, according to the (3.1), we have $|t| - 1 < |t - w_1| < c_1$. Let us put $\varepsilon_0 := |t| - 1$. According to (3.1), for all points $\xi \in L^*$ satisfying $d(\xi, L_R^*) \asymp d(\xi, L)$ holds $|t| - 1 \asymp |w_1| - R_1$. We then take the discs centered at the point w_1 , with radius $2^s \varepsilon_0$, s = 1, 2, ...N, where we choose a number N such that the circles $Q_N = \{\tau : |\tau - w_1| = 2^N \varepsilon_0\}$ satisfy the conditions $Q_N \cap \{t : |t| = R_1\} \neq \emptyset$, and $Q_{N+1} \cap \{t : |t| = R_1\} = \emptyset$. Then, putting $K_2^s := K_2 \cap \{t : 2^{s-1}\varepsilon_0 \le |t - w_1| \le 2^s \varepsilon_0\}$, we have consecutively

$$\begin{split} B_{n}^{12} & \prec \int \frac{|\Psi_{R}\left(t\right) - \Psi_{R}\left(w_{1}\right)|^{2(q-1)}\left(|t|-1\right)^{2(q-1)}}{K_{2}\left(|\Psi_{R}\left(t\right)|-1\right)^{2(q-1)}\left|\Psi_{R}\left(t\right) - \Psi_{R}\left(w_{1}\right)\right|^{\frac{2}{\alpha(2-\nu_{j})}(q-1)}}\frac{|dt|}{|t-w|^{q}} \\ & \prec \sum_{s=1}^{\infty} \int_{K_{2}^{s}} \left[\frac{|\Psi_{R}\left(t\right) - \Psi_{R}\left(w_{1}\right)|}{|\Psi_{R}\left(t\right)|-1}\right]^{2(q-1)} \frac{\left(|t|-1\right)^{2(q-1)}}{|t-w_{1}|^{\frac{2(q-1)}{\alpha}}}\frac{|dt|}{|t-w|^{q}} \\ & \prec \sum_{s=1}^{\infty} \int_{K_{2}^{s}} \left[\frac{|t-w_{1}|}{|t|-1}\right]^{2\varepsilon(q-1)} \frac{\left(|t|-1\right)^{2(q-1)}}{|t-w|^{q}}\left|dt\right| \\ & \prec \sum_{s=1}^{\infty} \frac{\left(2^{s}\varepsilon_{o}\right)^{2\varepsilon(q-1)}\left(\varepsilon_{o}\right)^{2\left(1-\varepsilon\right)\left(q-1\right)}}{\left(2^{s-1}\varepsilon_{o}\right)^{\frac{2(q-1)}{\alpha}}} \int_{K_{2}^{s}} \frac{|dt|}{|t-w|^{q}} \\ & = \sum_{s=1}^{\infty} \frac{2^{s2\varepsilon(q-1)}\left(\varepsilon_{o}\right)^{2\left(1-\varepsilon\right)\left(q-1\right)+2\varepsilon(q-1)}}{2^{\frac{2(q-1)}{\alpha}}\left(\varepsilon_{o}\right)^{\frac{2(q-1)}{\alpha}}} \int_{K_{2}^{s}} \frac{|dt|}{|t-w|^{q}} \\ & \prec 2^{\frac{2(q-1)}{\alpha}} n^{\frac{2(q-1)}{\alpha}} \left(\frac{1}{n}\right)^{2(q-1)} \sum_{s=1}^{\infty} \left(\frac{2^{\varepsilon}}{2^{\frac{1}{\alpha}}}\right)^{2s(q-1)} \int_{K_{2}^{s}} \frac{|dt|}{|t-w|^{q}} \\ & \prec n^{\frac{2(q-1)}{\alpha}-2(q-1)} \int_{K_{2}^{s}} \frac{|dt|}{|t-w|^{q}} \sum_{s=1}^{\infty} \left(\frac{2^{\varepsilon}}{2^{\frac{1}{\alpha}}}\right)^{2s(q-1)}} \prec n^{\frac{2(q-1)}{\alpha}-(q-1)}, \end{split}$$

where $\varepsilon = \varepsilon(L) < 1$. Therefore

$$B_n^{12} \prec n^{\frac{2(q-1)}{\alpha} - (q-1)},$$
 (5.9)

and using (5.6), (5.7), (5.8), and (5.9) we obtain

$$B_n^1 \prec n^{\frac{2(q-1)}{\alpha} - (q-1)}.$$
 (5.10)

Relations (5.4), (5.5), and (5.10) yield

$$A_n \prec n^{\frac{2}{p\alpha}} M_{n,p}.$$

As the system of points $\{z_j\}_{j=1}^m$ is isolated, we get (5.1).

For the proof of (5.2) we can write the integral representations for $P_n(z)$ by analogy to (4.1):

$$P_{n}\left(z_{1}\right)=-\frac{1}{\pi}\iint_{G_{R}}\frac{P_{n}\left(\zeta\right)y_{R,\zeta}}{\left(y_{R}\left(\zeta\right)-z_{1}\right)^{2}}d\sigma_{\zeta}, \quad z_{1}\in L.$$

With similar arguments as those used for proving the relations (4.2-4.11), it is easily shown that

$$|P_{n}(z_{1})| \quad \prec \quad M_{n,p} \left(\iint\limits_{y(G_{R} \setminus U_{\varepsilon})} \frac{d\sigma_{\zeta}}{|\zeta - z_{1}|^{\gamma_{1}(q-1)+2q}} \right)^{\frac{1}{q}}$$

$$\prec \quad M_{n,p} \left(\iint\limits_{|\zeta - z_{1}| \geq d(z_{1}, L_{R})} \frac{d\sigma_{\zeta}}{|\zeta - z_{1}|^{\gamma_{1}(q-1)+2q}} \right)^{\frac{1}{q}}$$

$$\prec \quad M_{n,p} d^{-\frac{(\gamma_{1}+2)}{p}} \left(z_{1}, L_{R} \right).$$

and so, according to [17], we obtain (5.2).

Note that the Theorems 5.1, 5.2 are sharp. This is easily seen by the example G = B, $h(z) \equiv 1$, $P_n(z) = \sum_{j=1}^{n} (j+1)z^j$.

Remark.

As for $K_n(z)$, $M_{n,2} \equiv 1$, the proof of Theorem 2.3 also follows from Theorem 5.2.

References

- [1] A. L. Kuzmina, Asymptotic representation of the orthogonal polynomials along a piecewise analytic curve. *In: Func. Anal. and Theory of Function*. Kazan (1963) [in Russian].
- [2] P. K. Suetin, Main properties of the orthogonal polynomials along a circle. *Uspekhi Mat. Nauk*, vol. 21, no2(128), 41-88(1966) [in Russian].
- [3] P. K. Suetin, Some estimation for orthogonal polynomials along a circle under the singularity of the weight and circle. *Siberian Mat. J.*, vol. 8, no5, 1070-1078(1967) [in Russian].
- [4] F. G. Abdullayev & V. V. Andrievskii, On the orthogonal polynomials in the domains with *K* -quasiconformal boundary. *Izv. Akad. Nauk Azerb. SSR.*, *Ser. FTM*, 1, 3-7(1983) [in Russian].
- [5] F. G. Abdullayev, On the orthogonal polynomials with shocks weight. *Izv. Akad. Nauk Azerb. SSR.*, *Ser. FTM*, 2, 3-7(1985) [in Russian].
- [6] F. G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part I). *Ukr. Math. J.*, Vol. 52, No:12, pp. 1807-1817, (2000).
- [7] F. G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part II). *Ukr. Math. J.*, Vol. 53, No:1, pp. 1-14, (2001).
- [8] F. G. Abdullayev, On the some properties of the orthogonal polynomials over the region of the complex plane (Part III). *Ukr. Math. J.*, Vol. 53, No:12, pp. 1934-1948, (2001).
- [9] F. G. Abdullayev, On the interference of the weight and boundary contour for orthogonal polynomials over the region. *J. of Comp. Anal. and Appl.* Vol. 6, No: 1, pp. 31-42, (2004).
- [10] F. G. Abdullayev, The properties of the orthogonal polynomials with weight having singularity on the boundary contour. *J. of Comp. Anal. and Appl.* Vol. 6, No: 1, pp. 43-59, (2004).
- [11] P. K. Suetin, Polynomials orthogonal over a region and Bieberbach polynomials. *Proc. Steklov Inst. Math.*, vol. 100. Providence. RI: American Math. Society, (1971).
- [12] V. V. Andrievskii, V. I. Belyi & V. K. Dzyadyk, *Conformal invariants in constructive theory of functions of complex plane*. Atlanta: World Federation Publ. Com. (1995).
- [13] L. V. Ahlfors, *Lectures on Quasiconformal Mappings*, Van Nostrand (Princeton, NJ, 1966).

- [14] V. V. Andrievskii, Constructive characterization of the harmonic functions in domains with quasiconformal boundary. *In: Quasiconformal continuation and Approximation by function in the set of the complex plane*. Kiev (1985) [in Russian]
- [15] Ch. Pommerenke, *Univalent Functions*. Gottingen:Vandenboeck and Ruprecht. (1975).
- [16] J. L. Walsh, *Interpolation and approximation by rational functions in the complex domain*. Moscow (1961) [in Russian].
- [17] F. D. Lesley, Conformal mapping of domains satisfying wedge conditions, *Proc. Amer. Math. Soc.*, 93, 483-488 (1985).

Mersin University, Faculty of Arts and Science, Department of Mathematics, 33343 Mersin - TURKEY. email: fabdul@mersin.edu.tr, udeger@mersin.edu.tr