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Abstract

The approximate orthogonalization method for a finite set of linearly in-

dependent vectors was introduced by Z. Kovarik in which it is necessity to

compute explicitly the inverse of a matrix in every iteration. It is proved that

Kovarik’s method converges quadratically. Several modifications have been

proposed for Kovarik’s method, all of which try to eliminate the necessity of

explicit computation of the inverse. Most of these methods are linear con-

vergent. The best modification, with a good convergent behaviour, is Petcu

and Popa’s, although they did not express any satisfactory reason for the ori-

gin of this modification. In this paper, we present a class of modifications

for Kovarik’s method which consists of Petcu and Popa’s method. We prove

that the methods from this class are, generally, linear convergent, while, only

for the special case of the Petcu and Popa’s method, it is quadratic conver-

gent. Therefore, we show that Petcu and Popa’s method, in contrast with

their claim, is not linear but quadratic convergent, turning it into an optimal

method in this class.

1 Introduction

Z. Kovarik [2] proposed his algorithm for approximate orthogonalization of a finite
linearly independent set of vectors from a Hilbert space. His algorithm is some kind
of iterative version of the classical Gram-Schmidt one and also some of its direct
applications have been derived for variational finite element formulation of elliptic
problems and least squares. Kovarik showed that the approximate orthogonaliza-
tion method has quadratic convergence. The main difficulty with this method is the
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necessity of computing the inverse of a matrix explicitly in every iteration. Many
years after Kovarik, Popa [4] adapted and extended his algorithm for a set of arbi-
trary vectors in Rn, and proved that the transformed matrix columns, in addition
to rows, are ”quasi-orthogonal”.

Suppose that m ≤ n and A is a m × n matrix of rank r. Kovarik’s method is
given by the following iterations:

A0 = A, Kk = (I − AkA
T
k )(I + AkA

T
k )−1, Ak+1 = (I + Kk)Ak, k ≥ 0. (1)

We note that if
‖AkA

T
k ‖2 < 1, (2)

then the matrix I + AkA
T
k will be invertible and vice versa [1]. In particular, for

k = 0, (2) is equivalent to:
‖AAT‖2 < 1. (3)

If (3) is true, then it can be proved that (2) satisfies, for all k ≥ 1 [4]. Moreover,
assumption (3) is not restrictive and can be obtained by an appropriate scaling of
matrix A. Therefore, without loss of generality, we assume that A satisfies in (3).

The following result was proved in [2]:

Theorem 1. If the rows of A are linearly independent, and if

A⋆ =
[

(AAT )1/2
]

−1
A,

then,

(a) the matrix A⋆ has mutually orthogonal rows;

(b) the sequence {Ak} defined by (1) converges to A⋆. Moreover,

‖K0‖2 < 1

and
‖A⋆ − Ak‖2 ≤ ‖K0‖2k

2 , ∀ k ≥ 1. (4)

Relation (4) tells us that the sequence generated by Kovarik’s method has
quadratic convergence.

We note that since the rows of A are linearly independent, the associated Gram
matrix AAT is symmetric and positive definite, so A⋆ is well defined. On the other
hand, if the rows of A are not linearly independent, the matrix (AAT )1/2 still exists,
but is no longer invertible. Thus, instead of A⋆, we have to consider its ”natural”
generalization A∞ defined by

A∞ =
[

(AAT )1/2
]+

A,

where B+ is the Moore-Penrose pseudoinverse of B (see [1]). Popa [4] proved that
in this case the sequence {Ak} converges to A∞ and the rows of A∞ are ”quasi-
orthogonal”.

Despite the quadratic convergence of Kovarik’s algorithm, there is a difficult
computational aspect related to the matrix inversion in (1) at each of its iterations.
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Several modifications have been proposed for Kovarik’s method, all of which try to
eliminate the necessity to explicitly compute the inverse. These are upon using some
approximations for (I + AkA

T
k )−1, which are based on Taylor’s series of particular

functions and are at least linear convergent [3,4]. Specially, in [3] Petcu and Popa
introduced a modification with a good convergent behaviour and showed that it is
linear convergent. Using numerical tests, they showed that their method converges
rapidly. In addition, they showed, computationally, that their method is superior
to the other ones in cost and the number of iterations. Unfortunately, they did not
express any satisfactory reason for the origin of their method.

In this paper, we introduce a class of modifications for Kovarik’s method that
includes also Petcu and Popa’s method. This class is based on a special quadratic
interpolation (and in a special case, linear interpolation). We will prove in what
follows that linear convergence is achieved in general, and, moreover, quadratic con-
vergence, in the special case of the method proposed by Petcu and Popa. Therefore,
we show that Petcu and Popa’s method, in contrast with their claim, is not linearly
but quadratically convergent, turning it into an optimal method in this class.

2 A Class of Modifications for Kovarik’s Method

In this section, we describe a class of modifications for Kovarik’s method which
contains the Petcu and Popa’s method. To this end, it is necessary to consider the
convergence behaviour of Kovarik’s method. The examination of the convergence
of Kovarik’s method leads to the examination of the convergence of a real numbers
sequence

σ
(k+1)
j =



1 +
1 − (σ

(k)
j )2

1 + (σ
(k)
j )2



 σ
(k)
j , (5)

(see [4]). Here, σ
(k)
j , j = 1, . . . , r, k ≥ 0, are the singular values of the matrix Ak.

Various modifications of Kovarik’s method are obtained by some approximations
of 1/(1 + (σ

(k)
j )2) (and therefore, (I + AkA

T
k )−1). For example, in [3] the quantity

1/(1 + (σ
(k)
j )2) was approximated by 1 − 0.5(σ

(k)
j )2, that leads to the sequence

σ
(k+1)
j =

[

1 +
(

1 − (σ
(k)
j )2

) (

1 − 0.5(σ
(k)
j )2

)]

σ
(k)
j (6)

and the corresponding variation of the Kovarik’s method:

Kk = (I − AkA
T
k )(I − 0.5AkA

T
k ), Ak+1 = (I + Kk)Ak, k ≥ 0. (7)

However, there is no satisfactory reason for the origin of this choice. It has been
shown that (7) is linear convergent but we will prove in what follows that the order
of convergence is, indeed, quadratic.

We present now a class of modifications for Kovarik’s method, based on a special
quadratic interpolation (or linear interpolation, in a special case). To clarify the
issue, we simplify (5) as the following:

σ
(k+1)
j =

2σ
(k)
j

1 + (σ
(k)
j )2

. (5′)
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Consider the function

f(t) =
1

1 + t
, 0 ≤ t ≤ 1.

We know that f(0) = 1 and f(1) = 0.5. We are going to approximate this function
with an as possible as ”good” quadratic polynomial passing through the points (0,1)
and (1,0.5). Suppose that this polynomial is

p(t) = a0 + a1t + a2t
2.

Since p(0) = 1 and p(1) = 0.5, we will have

a0 = 1, a2 = −0.5 − a1.

Therefore, p(t) is
p(t) = 1 + a1t − (a1 + 0.5)t2,

where a1 is a parameter. Due to the existence of the parameter a1 in p(t), a class
of approximations for f(t) is obtained. Different choices for a1 lead to different
modifications for Kovarik’s method. For example, if we choose a1 so that

∫ 1

0
f(t) dt =

∫ 1

0
p(t) dt,

then we will obtain a1 ≈ −0.841, leading to the sequence

σ
(k+1)
j = 2p((σ

(k)
j )2)σ

(k)
j

=
[

2 − 1.682(σ
(k)
j )2 + 0.682(σ

(k)
j )4

]

σ
(k)
j

=
[

1 +
(

1 − (σ
(k)
j )2

) (

1 − 0.682(σ
(k)
j )2

)]

σ
(k)
j

(8)

and the corresponding variation of the Kovarik’s method:

Kk = (I − AkA
T
k )(I − 0.682AkA

T
k ), Ak+1 = (I + Kk)Ak, k ≥ 0. (9)

Also, we can choose a1 in such a way that least squares error

∫ 1

0
(f(t) − p(t))2 dt

is minimal. With some calculations, we obtain a1 ≈ −0.848, leading to the sequence

σ
(k+1)
j = 2p((σ

(k)
j )2)σ

(k)
j

=
[

2 − 1.696(σ
(k)
j )2 + 0.696(σ

(k)
j )4

]

σ
(k)
j

=
[

1 +
(

1 − (σ
(k)
j )2

) (

1 − 0.696(σ
(k)
j )2

)]

σ
(k)
j

(10)

and the corresponding variation of the Kovarik’s method:

Kk = (I − AkA
T
k )(I − 0.696AkA

T
k ), Ak+1 = (I + Kk)Ak, k ≥ 0. (11)
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The convergence of these modifications will be examined later.

To make p(t) a good approximation for f(t), we choose the parameter a1 such
that p(t) is near l(t), where

l(t) = 1 − 0.5t

is the chord connecting the points (0, 1) and (1, 0.5). Since f(t) ≤ l(t), for all
t ∈ [0, 1], and since p(t) must be a good approximation for f(t), we have to impose
p(t) ≤ l(t). Therefore,

|l(t) − p(t)| = l(t) − p(t) = (a1 + 0.5)(t2 − t), ∀ t, 0 ≤ t ≤ 1.

On the other hand, since t2 ≤ t, for all t ∈ [0, 1], we must have a1 + 0.5 < 0 or
a1 < −0.5.

The special choice of a1 = −0.5 leads p(t) to decrease to l(t), so that the iterative
scheme

σ
(k+1)
j = 2

[

1 − (σ
(k)
j )2

]

σ
(k)
j

and the following sequence

Ak+1 = 2(I − AkA
T
k )Ak, k ≥ 0

is obtained. The above mentioned method is the same as that obtained by using
the first two terms of Neumann’s series [3] (also, see (5′))

(I + AkA
T
k )−1 = I − AkA

T
k + (AkA

T
k )2 − (AkA

T
k )3 + · · · .

Knowing the restrictions on the parameter a1 in p(t) (namely, a1 must satisfy
a1 + 0.5 < 0), we can formulate the general iterations

σ
(k+1)
j = 2p((σ

(k)
j )2)σ

(k)
j

=
[

2 + a1(σ
(k)
j )2 − 2(a1 + 0.5)(σ

(k)
j )4

]

σ
(k)
j

=
[

1 +
(

1 − (σ
(k)
j )2

) (

1 − α(σ
(k)
j )2

)]

σ
(k)
j

(12)

leading to the modified class of methods

Kk = (I − AkA
T
k )(I − αAkA

T
k ), Ak+1 = (I + Kk)Ak+1, k ≥ 0 (13)

that are similar to Kovarik’s method. Here, α = −2a1 − 1. Since a1 + 0.5 < 0, then
α > 0. We note that the choices of α = 0.5, α = 0.682, and α = 0.696, give us
methods (7), (9), and (11), respectively. Therefore, there is a family of modifications
for Kovarik’s method including the variant proposed by Petcu and Popa.

In the next section, we show that if the parameter α is chosen in a special interval,
then the class (13) is always convergent and, in general, the order of its convergence
is linear. However, only in the special case of Petcu and Popa’s method the order
of convergence is quadratic. Therefore, we show that the Petcu and Popa’s method
is an optimal method in the class of (13).
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3 Study of the Convergency

To determine the optimal value of α > 0 in the sense of convergence, we should first
examine the convergence of the sequence

xk+1 = h(xk), k ≥ 0 (14)

where
h(x) =

(

1 + (1 − x2)(1 − αx2)
)

x.

The above sequence starts from an initial approximation x0 ∈ (0, 1]. If there is an
x∗ such that x∗ = limk→∞ xk, then x∗ is a fixed point of function h(x) and we have

x∗ =
(

1 + (1 − (x∗)2)(1 − α(x∗)2)
)

x∗.

Therefore,
x∗(1 − (x∗)2)(1 − α(x∗)2)) = 0

which results in
x∗ ∈ {0, ±1, ±1/

√
α}.

First of all, we impose some conditions on α under which the sequence (14)
is convergent. For this, we find an interval [0, b], including (0, 1], for which h :
[0, b] −→ [0, b] and the sequence (14) is convergent to x∗ = 1 for any approximation
value x0 ∈ (0, b].

For h(b) ≤ b, we will have 1−(1+α)b2+αb4 ≤ 0, which is a quadratic polynomial
in terms of b2 with the following roots:

b2 =
(1 + α) ± |1 − α|

2α
.

Now one can simply find that







b ∈ [1, 1/
√

α] 1 − α ≥ 0

b ∈ [1/
√

α, 1] 1 − α < 0.

On the other hand, [0, b] must include (0, 1] and, moreover, x∗ = 1 is the unique
fixed point of h(x) in (0, b); therefore, we must choose the case b ∈ (1, 1/

√
α),

corresponding to 1 − α > 0, which means α must belong to (0, 1).
For the above mentioned values of α and b, it is clear that







h(x) > x ∀x ∈ (0, 1)

h(x) < x ∀x ∈ (1, b)
(15)

and also |h′(1)| = |2α − 1| < 1, so h(x) is a contraction mapping in a vicinity of
x∗ = 1.

In what follows, we show that the sequence (14) is convergent to x∗ = 1 for
all x0 ∈ (0, b] (and hence, for all x0 ∈ (0, 1]). In order to do so, we should show
that |xk+1 − 1| < |xk − 1|, for all k ≥ 0. Suppose that x0 ∈ (0, b] is an arbitrary
value. According to (15), the sequence {xk} is strictly increasing on (0, 1) and
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strictly decreasing on (1, b). Hence, if xk, xk+1 ∈ (0, 1) or, xk, xk+1 ∈ (1, b), then
|xk+1 − 1| < |xk − 1|. Therefore, it is only sufficient to consider the case xk ∈ (0, 1)
and xk+1 ∈ (1, b) (the second case in which xk ∈ (1, b) and xk+1 ∈ (0, 1) gives similar
results). It is clear that

|xk+1 − 1| = |xk + xk(1 − x2
k)(1 − αx2

k) − 1| = |xk − 1| |1 − xk(1 + xk)(1 − αx2
k)|.

If, for different values of α, one plots the function f(x) = |1 − xk(1 + xk)(1 − αx2
k)|

on [0, 1] or [1, 1/
√

α] separately, then it is observed that f(x) < 1, whenever α ∈
[0.21, 1). As a result, if α ∈ [0.21, 1), then |xk+1 − 1| < |xk − 1|, ∀ k ≥ 0 and
∀x0 ∈ (0, b].

Now we can summarize our results into the following theorem:

Theorem 2. If α ∈ [0.21, 1) and b ∈ (1, 1/
√

α), then x∗ = 1 is the unique fixed
point of h(x) in (0, b), and the sequence (14) converges to x∗ = 1, for any x0 ∈ (0, b]
(and hence, for any x0 ∈ (0, 1]).

The above theorem shows that the class of modifications (13) is convergent only
for α ∈ [0.21, 1).

Now, we consider the rate of convergence for sequence (14). Let em = xm − 1
denote the error in the mth iteration. For simplicity, let x = xm+1, x = xm, and
also e = em+1, e = em. Based on the relation

x = (1 + (1 − x2)(1 − αx2))x

= 2x − (α + 1)x3 + αx5,

we have

e = 2e − (α + 1)(e + 1)3 + α(e + 1)5

= (−1 + 2α)e + (7α − 3)e2 + (9α − 1)e3 + (5α)e4 + (α)e5.
(16)

Therefore,

lim
k→∞

|e|
|e| = |2α − 1|. (17)

Relationship (17) shows that the class of methods (13) is, in general, linearly con-
vergent with asymptotic error constant |2α − 1|. In this case, convergence is rapid
when |2α − 1| is small.

Previously, we saw that the special choice α = 0.5 is the same as that in the
method of [3] for which 2α − 1 = 0. Hence, according to (16),

lim
k→∞

|e|
|e|2 = |7α − 3| = 0.5. (18)

This shows that the method of [3] is quadratically convergent, and it is the only
one in the class (13) with this property. Then, we can say that the method of [3] is
optimal in our class with respect to convergence.

The following theorem can be proved immediately:

Theorem 3. Any method of the class (13) is linearly convergent, for all α, with
0.21 ≤ α < 1. For α = 0.5, we can obtain Petcu and Popa’s method which has
quadratic convergence. This is the only method with this property in this class and
in this sense is optimal.
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4 Conclusion

In this paper we represented a single-parameter class of modifications for Kovarik’s
method, which includes Petcu and Popa’s modification [3], based on a special
quadratic interpolation (with linear interpolation as a special case). We proved
that for a parameter α in (13) belonging to [0.21, 1), the above class would be gen-
erally linearly convergent. In addition, we proved that Petcu and Popa’s method
is the only convergent method of second order in this class. This also proves that
Petcu and Popa’s method has a quadratic convergence, in contrast to their claim,
and is an optimal method in this class.
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