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Abstract

In this paper, we prove L*°-regularity for solutions of some nonlinear el-
liptic equations with degenerate coercivity whose prototype is

—div(%\Vu!pJVu):f in €,

(14|l
u =0 on 01,

where Q is a bounded open set in RN, N > 2.1 < p < N, 6 is a real such that
N
0<60<1and f e Lrlog®L with some o > 0.

1 Introduction

Let Q be a bounded open subset of RN, with N > 2, and p a real such that
1 < p < N. We consider the following problem

A(u) := —diva(z,u,Vu) = f in Q,

(1.1)
u=>0 on 0f),

where a : Q x R x RV — RY is a Carathéodory function (that is, a(.,s,§) is
measurable on Q for every (s,£) in R x RY, and a(z, ., .) is continuous on R x RY
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for almost every x in 2), which we assume to satisfy the following assumptions

a(z, s,€).& = W7 (|s])I¢]” (1.2)

for almost every x in Q, for every (s,€) in R x RY where h : RT — ]0,00[ is a
decreasing continuous function such that its primitive

is unbounded,;
la(z, 5,6)| < ag(x) + [s[P~H + [P (1.3)

for almost z in Q, for every (s,&) € R x RY, where ag is a non negative function in

LP'(Q) with p/ = -5, and

(a(x>s>€) _a(zvsvgl))'(g_gl) >0 (14)

for almost z € €, for every s € R and for every &, & in RY with & # ¢
It is our purpose in this paper, to prove the existence of a weak solution for (1.1)
in Wy?(Q) N L>°(Q) when the data satisfies the assumption

N
feLrlog®L (1.5)
with a > w.

In the literature, many results concerning L* estimate for weak solutions of
(1.1) had been obtained. It was shown earlier in the setting of Orlicz spaces (see [7])
that when h in (1.2) is a constant function, every weak solution of (1.1) is bounded
provided that f belongs to the Lorentz space L(m,o0) with m > %.

Under the assumption (1.2), existence of bounded solutions for (1.1) has been
proved first in [1] and [3] when p = 2 and f belongs to L™(2) with m > £, and for
more general p, in [2] when the datum f belongs to L™(£2) with m > %.

Let us recall, as mentioned in [2] and [3], that if the data f belongs to L%(Q),
the problem (1.1) has no bounded solution.

We note that there is a difficulty in dealing with (1.1) under the assumption
(1.2), since the operator A is not coercive on Wy () and so the classical Leray-
Lions surjectivity theorem do not apply even in the case in which the datum f
belongs to W=7 (Q) where p' = £ (see [6]). To overcome this situation, we will
proceed by approximation by means of truncatures in a(z,s,{) to get a coercive
differential operator on W, ”(2).
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2 Background

It’s worth recalling here some definitions and notations that we will use later. Let
p>1and a € R, the Zygmund space LPlog®L, consists of all measurable functions
g on € for which

[ lglPloge (e + lgl)dz < ox.

It is an Orlicz space generated by the N-function O(t) = tPlog*(e +t), t > 0,
equipped with the so called Luxemburg norm

lglle = inf{A>0: / @(‘i;\')dxg 1.
Q

For p > 1, the conjugate N-function of © is equivalent (see [5]) to tp/log_a%(e +1)
where p' = ~25. Thus, it follows that the dual of LPlog®L coincides with L¥log ¥ L.
The inverse function ©~! of © is equivalent to t%log_%(e +1).

We recall that for a subset E of €2, the Luxemburg norm, associated to an N-
function M, of the characteristic function xg of E is (see [5])

1

IxEllar = (2.1)

where | E| denotes the Lebesgue measure of E.
The decreasing rearrangement of a measurable function w : {2 — R is defined as

w(s) =inf{t € R: p,(t) <s} for se€(0,[Q),
where
p(t) = {2 € Q: Jw(z)] > t}]
is the distribution function of w. Hence, w* is the generalized inverse function of y,,
and
w(0) = [[w]]sc-

For more details, one can see [7, 8.
Throughout the paper, Ty, the truncation at level £ > 0, and G} are functions
defined by T} (s) = max(—Fk, min(s, k)) and Gi(s) = s — Ti(s).

3 Main result

Our main result is the following,

Theorem 3.1. Under the assumptions (1.2), (1.3), (1.4) and (1.5), the problem
(1.1) has at least a weak solution u in Wy (Q) N L®(Q) in the sense that

/Qa(:c,u, Vu) - Vude = /vadx (3.1)
for all v in D(Q).

Remark 3.1. The space L%logaL s contained in L%(Q) and contains the spaces
L™(Q2) with m > %, in this sense our result is a refinement of the one given in [2].
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4 Proof of theorem 3.1

Stepl: L*°-bound

Remark that the operator A in (1.1) is not coercive, this is due to the assumption
(1.2). To get rid of this situation, we consider the differential operator

Ap(u) = —=diva(z, T,(u),Vu), neN

which turns out to be pseudo-monotone from W, ”(Q) to its dual W~ (). More-
over, by (1.2), we have

<A,(u),u> = /a(x,Tn(u),Vu)Vudx

Q
> [ WP Ta(w)) | VulPde
Q

> hl(n) / VulPdz.
Q

Hence, A, is coercive on Wy ().
Let (fn)n be a sequence of L*™-functions such that

fo— f in LY(Q) and |f] <|f].

It is known, thanks to the Leray-Lions existence theorem (see [6]), that there exists
a function u, in Wy(Q) such that

/Qa(:c,Tn(un),Vun)~V¢dx = /an¢dx (4.1)

holds for every ¢ in W, 7(Q).
For t > 0 and € > 0, we use T.(G;(u,,)) as test function in (4.1), obtaining

/ a(x, T, (un), Vu,)Vu, de < 6/ | f|dz
{t<|un|<t+e} {lun|>t}
Dividing both sides by € and using (1.2), we get

1 -1

-/ W (fn ) [V < flda.

€ J{t<|un|<t+e} {lun|>t}

Since h is a nonnegative and decreasing function, one has

1
—hp‘l(tJre)/{ Vun|Pdz < / | f|dz.
€

t<|un|<t+e} {lun|>t}
Then, letting € tends to 07 we have

d
W rt) [ —— Vu,|Pde | < dz. 4.2
<>(ﬁﬂwmgu\x)_ﬂwwuu: (42)
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On the other hand, Holder’s inequality implies that

/ Vup|de < [{t <|u,| <t+ €}|ﬁ </ |Vun|pda:>
{t<lun|<t-+e} {t<lun|<t-+e}

< 0 = ntt+ )7 ( ] vz
{t<|un|<t+e}

B =

B =

where p,, denotes the distribution function of u,, that is
pn(t) = {z € Q: fun(z)| > t}].

Then, dividing both sides of the last inequality by ¢ we obtain

1

1 7 (1 >
Vu,|d <<—— Lt —nt) —/ Vau,Pdz ).
€ /{t<|un|§t+e} | “ | v € (Iu ( 6) s ( )) < {t<|un|<t+e} | ! | z)

€

Letting € — 07, we get
1

d 1 d P
— Vu,|lde < (N | —— Vu,|Pd . 4.3
oL Pl < 4 (ﬁﬂwm|uwﬂ (4.3)

Now, let us recall the wellknown inequality (see [7])

d

1 1
NCY (u,(t)'"v < ——
N (kn(t)) S 70 s

|V, |dz (4.4)

where Cy denotes the measure of the unit ball in RY. Combining (4.2), (4.3) and
(4.4), we obtain

—q %,
Nplc’g (/”Ln(t))pl(l_%) {lun|>t}

Using Holder’s inequality in Orlicz spaces, the above inequality becomes

(1) Lo
W) < —— 1 S N
NP CT (o) e 15

’
P
P

Thanks to (2.1), we get

2514117y r

L7 log®L — My

h(t) < L . —
NPCY  pn(t)log®~ (e + -55)

Thus, integrating both sides of the above inequality between 0 and 7 gives
o 2
27 [ f1 "

N T —
H(r) < Lt [ fall) dt,
NrYoy o
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and a change of variables yields

A
27 i
H(T) < ||f“L%logaL /#nl(ﬂ') ds
B NP’C’]% w slog®F (e + s)

The definition of the rearrangement allows us to have

ATy,
D @ Ea dS
* LPlog®L o
H(u;(0)) < ek [T
NP T slogtN (e + s)
hence follows the inequality
211117
D fe% 0 dS
P lo
H(unlo) € ——E2t [ ——2 (45)
NYCF 1 $log®~ (e + s)

Since ozp—]\l, > 1, the integral in (4.5) converges, and the assumptions made on the
function H ensures that ||u, |- is uniformly bounded, indeed one has

/ /

25117
P log®™ © d
HunHoo < H™ L pl/ gL /1 p/S ) (46)
NP N Tmr slog®N(e+ s)
where H ! denotes the inverse function of H.
In what follows, let us denote by A the constant on the right of (4.6), that is
[tnlloo < A (4.7)

Step2: W, ”-estimate
Thanks to (1.2) and (4.7), it is easy to get an estimation in W, (). Taking u, as
test function in (4.1), we get

W) [ Vualde < ellf]

N ’
LPlog®L

where ¢ is a constant not depending on n.
Therefore, we can deduce that there exist a subsequence of {u,}, still denoted by
{u,}, and a function u in Wy (Q) such that

U, — u weakly in WyP(Q) and a.e in Q. (4.8)

Step3: Passage to the limit
In order to pass to the limit in the equation (4.1), we need to prove the almost
everywhere convergence of the gradients of solutions, that is

Vu, — Vu a.e in Q. (4.9)

This can be proved as previously done in [4], indeed this is easy since u,, is a bounded
function. For n > A, thanks to (4.7), (4.8) and (4.9) one can pass to the limit in
(4.1), for all ¢ in D(Q), and conclude, since f belongs at least to L'(£2), that u is a
bounded solution to problem (1.1) in the sense of (3.1).
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