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Abstract

In this paper we extend a classical result, namely, the one that states

that the only doubly ruled surfaces in R3 are the hyperbolic paraboloid and

the hyperboloid of one sheet, in three directions: for all space forms, for any

dimensions of the rulings and manifold, and to the conformal realm. We show

that all this can be reduced, with the help of quite natural constructions, to

just one simple example, the rank one real matrices. We also give the affine

classification in Euclidean space. To deal with the conformal case, we make

use of recent developments on Ribaucour transformations.

The spirit of this work relies on a very classical result: the only (non-planar) dou-
bly ruled surfaces in R3 are (open subsets of) two quadrics, the hyperbolic paraboloid
and the hyperboloid of one sheet. A discussion on doubly ruled surfaces in R3 can
be found in the beautiful book [5], Ch.1, §3. Our purpose here is to give similar
classifications in much broader contexts.

The natural spaces to look for doubly ruled submanifolds are the ones provided
with as many as possible totally geodesic or totally umbilical submanifolds. By
the main result in [6], these spaces must have constant sectional curvature. So,
let Mm be an m-dimensional (immersed) connected submanifold of a space form
Qm+p

c , i.e, a simply-connected complete Riemannian manifold of constant sectional
curvature c. We say that Mm ⊂ Qm+p

c is doubly ruled (resp. doubly conformally
ruled) if Mm has two nontrivial smooth foliations F1 and F2 whose leaves are totally
geodesic (resp. totally umbilical) in Qm+p

c and transversal, that is, TF1+TF2 = TM
along Mm. Observe that F0 = F1 ∩ F2 is a smooth foliation whose leaves are also
totally geodesic (resp. totally umbilical) in Qm+p

c . Alternatively, we will say that
Mn+k+r ⊂ Qn+k+r+p

c is a (n + r, k + r)-ruled (resp. conformally ruled) submanifold,
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if it is doubly ruled (resp. conformally ruled) as above, with n + r = rankF1,
k + r = rankF2, and hence r = rankF0. For simplicity, we always assume that
n ≥ k.

Let us introduce a basic and quite natural example inside the space of real
matrices.

The maximal cones. For n ≥ k ∈ N, let Cn,k be the cone given by

Cn,k = {S ∈ R(n+1)×(k+1) : rank S = 1}.

Since S ∈ Cn,k has all its columns (rows) collinear, there are x ∈ Rn+1
∗ = Rn+1 \ {0}

and y ∈ Rk+1
∗ = Rk+1 \ {0} such that S = xty as a product of matrices, where At

will always denote the transpose of A. Because this way of writing such an S is
unique up to a real factor, it is clear that Cn,k is a smooth (n + k + 1)-dimensional
submanifold of R(n+1)×(k+1) = Rn+k+1+nk diffeomorphic to (Rn+1

∗ ×Rk+1
∗ )/R∗, under

the equivalence relation (x, y) ∼ (λx, λ−1y), λ ∈ R∗. In fact, Cn,k is an embedded
algebraic submanifold of degree two, since an open dense subset of Cn,k can be
parametrized by the set of equations S11Sij = S1jSi1, S11 6= 0, for 2 ≤ i ≤ n + 1,
2 ≤ j ≤ k + 1; see Remark 15. Moreover, we have two well defined submersions:

sC : Cn,k → RPn, c(xty) = [x], and sR : Cn,k → RPk, r(xty) = [y].

The fiber C[x] = s−1
C ([x]) ⊂ Cn,k (resp. R[y] = s−1

R ([y]) ⊂ Cn,k) is the (k + 1)-
dimensional (resp. (n + 1)-dimensional) vector subspace, with the origin removed,
of all rank one matrices whose columns (resp. rows) are collinear with x (resp. y).
They thus define two smooth totally geodesic foliations C and R of Cn,k, whose
intersection is

C[x] ∩ R[y] = R∗(x
ty). (1)

Therefore, Cn,k is a (n + 1, k + 1)-ruled submanifold. Since it is easy to see that
the intersection of Cn,k with any affine hyperplane that does not pass through the
origin, Rn+k+nk

D = {A ∈ R(n+1)×(k+1) : trace (AtD) = 1}, D ∈ R(n+1)×(k+1) \ {0},
is nonempty and transversal by (1), we obtain the family of complete (n, k)-ruled
submanifolds of dimension n + k in Rn+k+nk = Rn+k+nk

D given by

N n,k
D = Cn,k ∩ Rn+k+nk

D . (2)

With the cone Cn,k we can also easily construct ‘linear’ cylinders in space forms.
Given n ≥ k ∈ N, r ∈ N ∪ {0}, consider on RN+1 the usual positive definite (resp.
Lorentzian) inner product 〈 , 〉 which turns EN+1 = (RN+1, 〈 , 〉) into the standard
flat Euclidean space RN+1 (resp. Lorentzian space LN+1), where, throughout this
paper,

N = N(n, k, r) = n + k + r + nk.

For each c > 0, we then have the usual model of the standard sphere of curvature c,
QN

c = SN
c = {Z ∈ RN+1 : 〈Z, Z〉 = c2}, and, for c < 0, the hyperbolic space of

curvature c, QN
c = HN

c = {Z ∈ LN+1 : 〈Z, Z〉 = −c2, Z0 > 0}. For curvature
c = 0, consider a fixed affine hyperplane QN

0 ⊂ RN+1 that does not contain the
origin. Again by (1), for any linear isomorphism L of RN+1, L ∈ GL(N +1, R),
all these hypersurfaces of constant sectional curvature intersect the maximal cone
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L(Cn,k × Rr) ⊂ RN+1 and both foliations L(C × Rr) and L(R × Rr) transversally.
Hence,

cN n,k,r
L = L(Cn,k × Rr) ∩ QN

c ⊂ QN
c

are all embedded (n+ r, k + r)-ruled (n+ k + r)-dimensional algebraic submanifolds
of degree two in QN

c , c ∈ R. Moreover, they are substantial (resp. conformally
substantial), i.e., they are not contained in a proper totally geodesic (resp. totally
umbilical) submanifold of the ambient space. Notice that the boundary of cN n,k,r

L

is L({0} × Rr) ∩ QN
c , that coincides with the singular set of its closure.

Our first classification result states that these are the only examples of doubly
ruled submanifolds in space forms, even locally, when in maximal codimension.

Theorem 1. Let Mn+k+r ⊂ Qn+k+r+p
c be a substantial (n+r, k+r)-ruled submanifold,

with n, k ≥ 1, r ≥ 0. Then, p ≤ nk. Moreover, if equality holds, then Mn+k+r is
congruent to (an open subset of) cN n,k,r

L ⊂ QN
c , for some L ∈ GL(N + 1, R).

With the above it is not hard to obtain the affine classification in Euclidean
space that easily recovers the classical result for surfaces, for which n = k = 1 and
r = 0. We set sign(r) = 0 for r = 0, sign(r) = 1 for r > 0.

Corollary 2. Any substantial (n + r, k + r)-ruled submanifold Mn+k+r ⊂ RN is
affinely equivalent to either Cn,k×Rr−1 or N n,k

D ×Rr, for some 0 6= D ∈ R(n+1)×(k+1).
Moreover, N n,k

D × Rr and N n,k
D′ × Rr are affinely equivalent if and only if rank D =

rank D′. In particular, up to affine transformations, there are exactly k + 1 + sign(r)
substantial (n + r, k + r)-ruled submanifolds of dimension n+k+r in RN .

Both results above also hold for semi-Riemannian space forms, since the proper-
ties of being doubly ruled or substantial in Euclidean space have nothing to do with
inner products, definite or not.

Several geometric consequences can now be derived. For example, any doubly
ruled (substantial) submanifold in a space form Qm

c with maximal codimension has
sectional curvature less or equal than c. It is also not hard to see that two neigh-
borhoods of N n,k

D and N n,k
D′ are isometric if and only if they are congruent and there

are orthogonal endomorphisms A ∈ O(n+1) and B ∈ O(k+1) such that D′ = ADB.

As a simple application, the following corollary implies that the lifting via
the Hopf fibration of a totally real and totally geodesic RPn ⊂ CPn, that is,
1N n,1,0

Id ⊂ S2n+1, is (linearly) the only complete doubly ruled submanifold in the
sphere, in any codimension, for which one of the foliations has minimal rank (k = 1).
The hypothesis on completeness can be weakened by asking the submanifold to have
two complete rulings of the same foliation.

Corollary 3. Let Mn+k+r ⊂ Sn+k+r+p be a complete (n+r, k+r)-ruled submanifold.
Then, p ≥ n + r + 1 − k and either r ≤ (n + 1)(k − 1) − 1 or r = 0. In particular,
if k = 1, then r = 0 and Mn+1 = 1N n,1,0

L ⊂ S2n+1, with L ∈ GL(2n+2, R).

Let us now study the situation in the conformal realm. Since all space forms are
conformally equivalent via the standard stereographic projections, there will be no
restriction in working on Euclidean space.
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It is clear that if we take one of the above examples of doubly ruled submani-
folds in space forms in maximal codimension we get, via stereographic projection if
necessary, examples of doubly conformally ruled submanifolds in Euclidean space,
cN n,k,r

L ⊂ QN
c
∼= RN . Particular cases are obtained by choosing the r-cylinders over

cN n,k,0
L ⊂ QN−r

c , that is, if L ∈ GL(N+1−r, R), for c = 0 we have

(L(Cn,k) × Rr) ∩ (QN−r
0 × Rr) ⊂ RN ,

and, for c 6= 0,
(L(Cn,k) × Rr) ∩ QN

c ⊂ QN
c
∼= RN ,

for the fixed decomposition EN+1 = EN+1−r ×Rr. Our next result states that, if the
codimension is large enough, doubly conformally ruled submanifolds are conformally
equivalent, i.e., congruent via a conformal diffeomorphism of the ambient space, not
only to doubly ruled ones, but in fact to cylinders over doubly ruled submanifolds,
provided the two foliations intersect (nontrivially). For the isometric version see
Theorem 11.

Theorem 4. Let Mn+k+r ⊂ Rn+k+r+p be a conformally substantial (n+r, k+r)-
conformally ruled submanifold, with n, k, r ≥ 1. Then, p ≤ nk. If p > (n − 1)k,
then M is conformally equivalent to (the stereographic projection of an open subset
of) an r-cylinder over a (n, k)-ruled submanifold of dimension n+k in a space form.

As a direct consequence of Theorem 1 and Theorem 4 we conclude that the
doubly conformally ruled case for maximal codimension is even more restrictive
than the doubly ruled case, when the two foliations intersect.

Corollary 5. Let Mn+k+r ⊂ RN be a conformally substantial (n+r, k+r)-confor-
mally ruled submanifold, with n, k, r ≥ 1. Then, Mn+k+r is conformally equivalent
to an r-cylinder over cN n,k,0

L ⊂ QN−r
c , for some c ∈ R and L ∈ GL(N+1−r, R).

Observe that the cone Cn,k itself satisfies the hypothesis of the above. In fact, it
coincides with the stereographic projection from the point (0, . . . , 0, 1) of 1N n,k,1

Id .
Similar relation holds for any cone in Euclidean space. A more detailed discussion
on r-cylinders will be given in Remark 13.

Theorem 4 and Corollary 5 do not hold for r = 0. For example, the circular
cone in R3 is a counterexample, since the property that the normal components of
the (non-normalized) mean curvature vectors of both rulings coincide is a conformal
invariant. To see this, observe that if Mm ⊂ Qm+p

c is doubly conformally ruled and
satisfies this property, for all x ∈ Mm the two rulings that pass at x are contained
in the m-dimensional totally umbilical submanifold of Qm+p

c that is tangent to Mm

at x and which mean curvature vector at x coincides with the ones of the rulings.
Our last result shows that this conformally invariant property is, in fact, sufficient
to assure the reduction to the doubly ruled case in high codimensions when r = 0.

Theorem 6. Let Mn+k ⊂ Rn+k+p be a conformally substantial (n, k)-conformally
ruled submanifold. Assume further that the normal components of the mean curva-
ture vectors of both rulings coincide. Then, p ≤ nk. If p > (n − 1)k, then Mn+k

is conformally equivalent to an (n, k)-ruled submanifold of dimension n + k in a
space form. In particular, if p = nk, such doubly ruled submanifold must be some
cN n,k,0

L ⊂ Qn+k+nk
c .
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The analysis of the conformal situation relies on recent developments on general-
izations of the Ribaucour transformation; cf. [4]. It turns out that the intersection
of the rullings gives rise to a Dupin principal normal with integrable conullity, an
object which is well locally described by means of this transformation.

1 The conformal realm: cylinders

In this section we study the geometry of the intersection of the rulings of doubly
conformally ruled submanifolds, and we show that they are conformally equivalent
to cylinders over doubly ruled ones when such intersection is nontrivial or if the
normal components of the mean curvature vectors of both rulings coincide. We
follow closely the terminology in [4].

We need the following basic fact.

Proposition 7. Any (conformally) substantial doubly ruled submanifold Mm in
Qm+p

c is locally (conformally) substantial.

Proof: Let us do the doubly ruled case in Rm+p, the remaining ones being similar.
We claim that if two points x1, x2 ∈ Mm belong to the same ruling of one of the

foliations, say, F1, and if there is a neighborhood V of x1 substantially contained in
an affine subspace L, then there is a neighborhood V ′ ⊃ V of x2 that is also contained
in L. This is so because L is affinely spanned by the leaves of F1 that intersect V .
Since x2 ∈ F1(x1), the union of such leaves gives the desired neighborhood.

Assume Mm is not locally substantial, and let x0 be an accumulation point of
the open subset U ⊂ Mm consisting of the points x ∈ Mm for which there exists a
nonsubstantial open neighborhood Vx ⊂ Mm of it. Take x ∈ U close enough to x0

such that there is x′ ∈ F1(x0)∩F2(x). By the above claim, there is a neighborhood
of x0, x′ and x which is also not substantial. Hence, x0 ∈ U and U is closed.
Therefore, U = Mm is not substantial, which is a contradiction.

Let Mm ⊂ Qm+p
c be a conformally substantial doubly conformally ruled subman-

ifold, with conformal ruled foliations F1 and F2. Denote by ∇̃ the usual Levi-Civita
connection of Qm+p

c , and by ∇⊥ and α the normal connection and second funda-
mental form of Mm in Qm+p

c , respectively. Assume that F0 := F1∩F2 is non-trivial.
Then, F0 has constant positive rank and thus it is also a smooth foliation with
totally umbilical leaves in Qm+p

c . To simplify the reading, from now on we will also
denote by Fi its associated distribution, i.e., TFi, 0 ≤ i ≤ 2. Therefore, there are
tangent vector fields Zi ∈ TM ∩ F⊥

i and normal vector fields ηi ∈ T⊥M such that

(∇̃XY )F⊥

i
= 〈X, Y 〉(Zi + ηi), ∀ X, Y ∈ Fi, 0 ≤ i ≤ 2. (3)

Since F0 ⊂ Fj is nontrivial, we have that

η0 = η1 = η2, and Zj = (Z0)TM∩F⊥

j
, j = 1, 2, (4)

where, throughout this note, for a subbundle E and a vector X, XE will denote the
orthogonal projection of X onto E. In particular, if r ≥ 1 the normal components
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ηj , j = 1, 2, of the (non-normalized) mean curvature vectors of both rulings coincide.
The first consequence is that

F0 is totally geodesic if and only if F1 and F2 are totally geodesic. (5)

Moreover, if we define β = α − 〈 , 〉η0, by (3), the transversality of F1 and F2, and
F0 ⊂ Fj, j = 1, 2, we have that

β(F0, TM) = 0, (6)

β(F1,F1) = 0 = β(F2,F2). (7)

Equation (6) says that η0 is a principal normal of Mm along the connected compo-
nents of an open dense subset of Mm where the nullity subspaces of β as a bilinear
map,

E = Eη0
= {Z ∈ TM : β(Z, TM) = 0},

have locally constant dimension, and that F0 is an umbilical distribution associated
to η0, i.e, F0 ⊂ E . Since the leaves of F0 are totally umbilical submanifolds of Qm+p

c ,
for v ∈ F0 we get

0 = (∇̃v(Z0 + η0))T⊥M = β(Z0, v) + ∇⊥
v η0 = ∇⊥

v η0,

that is, η0 is parallel in the normal connection along F0, a condition which is auto-
matic for umbilical distributions of dimension greater or equal than two (see Propo-
sition 8 in [3]). Thus, η0 is also parallel along E ⊃ F0, i.e., η0 is a Dupin principal
normal of Mm, on the open subsets where E has constant dimension.

Proposition 8. Let Mn+k+r ⊂ Qn+k+r+p
c be a conformally substantial (resp. sub-

stantial) (n + r, k + r)-conformally ruled (resp. (n + r, k + r)-ruled) submanifold.
In the conformal case, if r = 0, assume further that the normal components of the
mean curvature vectors of both rulings coincide, call them η0 and define β as above.
Then:

i) It holds that span{β(F1,F2)} = T⊥M almost everywhere. In particular,
p ≤ nk.

ii) If p > (n − 1)k, then E = F0 and E⊥ is integrable and totally umbilical in M .

Proof: In this proof, j will denote an index j = 1, 2. Set S(β) := span{β(F1,F2)}.
i). Assume there is an open subset U ⊂ M where dim S(β) is constant and

S(β) 6= T⊥M . Hence, S(β)⊥ ⊂ T⊥M is a nontrivial smooth normal subbundle.
From (3) and (4) we see that Zj + η0 is the mean curvature vector of the umbilical
leaves of Fj and then 0 = (∇̃V (Zj + η0))T⊥M = β(Zj, V ) + ∇⊥

V η0, for V ∈ Fj .
Thus, ∇⊥

V η0 ∈ S(β) for all V ∈ TM . By Codazzi equation, if X ∈ F1, Y, Z ∈ F2,
ξ ∈ S(β)⊥,

〈β(X, Y ),∇⊥
Zξ〉 = −〈∇⊥

Zβ(X, Y ), ξ〉 = 〈〈X, Y 〉∇⊥
Zη0 − 〈Y, Z〉∇⊥

Xη0, ξ〉 = 0. (8)

Reversing the roles of F1 and F2 we obtain that S(β)⊥ is parallel. Since the shape
operator Aξ of M in the direction ξ satisfies Aξ = 〈ξ, η0〉Id, it is a standard fact
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(cf. [7]) that U is contained in a proper umbilical (resp. totally geodesic if η0 = 0)
submanifold of Qn+k+r+p

c , which contradicts the assumption that M is conformally
substantial (resp. substantial) in view of Proposition 7. Part i) now follows from (6)
and (7).

ii). Set F ′
j = Fj ∩ F⊥

0 . Let X = X1 + X2 ∈ E ∩ F⊥
0 , with Xj ∈ F ′

j. By (7),
Xj ∈ E . Since n ≥ k and S(β) = S(β|F ′

1
×F ′

2
), part i) yields that X = 0 and then

E = F0.
For T ∈ E , let CT : E⊥ → E⊥ be given by

CTX = −(∇XT )E⊥.

From (3) and E ⊂ Fj, it holds that CT (F ′
j) ⊂ F ′

j. On the other hand, from Codazzi
equation we get

β(CTX, Y ) = β(X, CT Y ), ∀ X ∈ F ′
1, Y ∈ F ′

2. (9)

If v ∈ F ′
2 and w = CT v are linearly independent, then β(X, w) = β(CT X, v) for all

X ∈ F ′
1, that contradicts the assumption on p by part i). Hence, CT |F ′

2
= µIdF ′

2
.

Now by (7) and (9), CT = µId and the proof follows.

The paper [4] was devoted to the study of the geometry of submanifolds M
carrying a Dupin principal normal η whose conullity E⊥

η is integrable. The techniques
developed in that paper allow to give a short proof of the main result in [3], where
they were studied submanifolds for which E⊥

η is totally umbilical in M , that is a
conformal invariant (in fact, a Lie invariant). Although Theorem 1 in [3] will give
us a complete description of our doubly conformally ruled submanifolds in view of
Proposition 8, we prefer the extrinsic description given in [4] as generalized cylinders.

In fact, Theorem 11 and the proof of Theorem 15 of [4] say that if E⊥
η is totally

umbilical in Mm ⊂ Qm+p
c and dim E⊥

η = q ≥ 2, which is our case since dim E⊥ =
n + k, then Mm is locally conformally congruent to (the stereographic projection,
if c 6= 0, of an open subset of) an r-cylinder over a submanifold Wm−r ⊂ Qm−r+p

c

described as follows. Consider the totally geodesic inclusion Qm−r+p
c ⊂ Qm+p

c and
call its normal bundle V = Vr. The r-cylinder over Wm−r is the m-dimensional
submanifold given by

Sr(W
m−r) = {expx(γ) : x ∈ Wm−r, γ ∈ V(x)} ⊂ Qm+p

c , (10)

where exp stands for the exponential map of Qm+p
c . Moreover, it also holds that the

cylindrical rulings, that is, the ones obtained by fixing x in (10), correspond to the
ones of Eη. It is clear that we can also describe Sr(Wm−r) as either Wm−r × Rr ⊂
Rm+p, if c = 0, or (CWm−r ×Rr)∩Qm+p

c ⊂ Em+p+1 = Em−r+p+1×Rr if c 6= 0, where
CWm−r ⊂ Em−r+p+1 stands for the cone over Wm−r ⊂ Qm−r+p

c ; see also Remark 13.

Remark 9. Lemma 10 in [4] implies that the three classes in Theorem 4 and
Corollary 5 given by the sign of c ∈ R are conformally disjoint, since M = Sr(W)
is conformally substantial if and only if W is. This implies that submanifolds in
different classes cannot be glued together, and then our description as r-cylinders is
global. This was also shown by direct methods in more generality at the end of the
proof of Theorem 1 in [3].
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Proof of Theorem 4: By Proposition 8 and the discussion above we already know
that Mn+k+r is conformally equivalent to an open subset of Sr(Wn+k), where the
leaves of E correspond to the cylindrical rulings. Since these rulings are totally
geodesic, from (5) we easily conclude that Wn+k should be (n, k)-ruled.

Proof of Theorem 6: We get the inequality on p from Proposition 8. With the
notations in (3), by assumption we know that η := η1 = η2. Let Z ∈ TM be defined
by ZF⊥

j
= Zj, where j = 1, 2 throughout this proof. Set

ξ = e−
1

2
‖Z‖2

(Z + η).

Then, since the leaves of Fj are totally umbilical, for X ∈ Fj we obtain from (3)
that

e
1

2
‖Z‖2

∇̃Xξ = −‖Zj + η‖2X + ∇̃XZFj
− 〈X, Z〉(Z + η) ∈ Fj. (11)

On the other hand, for X ∈ F1, Y ∈ F2, Codazzi equation yields

∇⊥
Xα(Y, Z) −∇⊥

Y α(X, Z) − α([X, Y ], Z) = α(Y,∇XZ) − α(X,∇Y Z). (12)

In terms of β = α − 〈 , 〉η, the normal component of (11) is just

β(V, Z) + ∇⊥
V η = 0, ∀ V ∈ TM. (13)

Hence, (12) becomes R⊥(Y, X)η = β(Y,∇XZ − 〈X, Z〉Z) − β(X,∇Y Z − 〈Y, Z〉Z),
where R⊥ stands for the curvature tensor of the normal connection of Mn+k. Using
the Ricci equation in the left hand side we get that

β(DX, Y ) = β(X,DY ), ∀ X ∈ F1, Y ∈ F2, (14)

where DV = ∇V Z − 〈V, Z〉Z − AηV = e
1

2
‖Z‖2

∇̃V ξ, V ∈ TM . Since by (11) we
have that DFj ⊂ Fj, the same argument after (9) applies to (14) and similarly we
obtain that D = λId, for some λ ∈ C∞(M). We conclude that dξ = aId, for some
a ∈ R since the left hand side is a closed 1-form. Equivalently, ξ = af + v, a ∈ R,
v ∈ Rn+k+p, where f stands for the immersion Mn+k ⊂ Rn+k+p. By means of an
inversion and a translation, we can assume without loss of generality that ξ = af ,
for some a 6= 0.

For V ∈ TM we have that

V (−e−
1

2
‖Z‖2

) = e−
1

2
‖Z‖2

〈Z, V 〉 = 〈ξ, V 〉 = a〈f, V 〉 = V ((a/2)‖f‖2).

Thus, there is c ∈ R such that ‖f‖2 = −2a−1e−
1

2
‖Z‖2

−c/4. Let ǫ = sign(c). Consider
Rn+k+p = {0} × Rn+k+p ⊂ En+k+p+1, where En+k+p+1 = Rn+k+p+1 if c ≥ 0 or
En+k+p+1 = Ln+k+p+1 if c < 0 as in the introduction. Let S : Rn+k+p → Qn+k+p

c ⊂
En+k+p+1 be map

S(y) = ν(
√

ǫc/4, y), ν = ‖(
√

ǫc/4, y)‖−2 = (c/4 + ‖y‖2)−1.

Observe that this is the stereographic projection for c 6= 0 and an inversion followed
by a translation for c = 0. Consider M̃n+k = S(Mn+k) ⊂ Qn+k+p

c , with its associated
rulings F̃j = S(Fj) that give rise to the corresponding vectors Z̃, η̃ and map β̃. A



Doubly ruled submanifolds in space forms 697

straightforward computation now shows that the second fundamental form α̃ of

M̃n+k is given by α̃ = νT (α − 〈 , 〉η), where T (y) = y − 2ν〈y, (
√

ǫc/4, y)〉(
√

ǫc/4, y)

(see Theorem 1 in [4]). Then, η̃ = 0 and α̃ = β̃. Therefore, the corresponding
equation (13) for M̃n+k implies that β̃(Z̃, TM) = 0. By the hypothesis on p and
Proposition 8 i) we conclude that Z̃ = 0. Thus, F̃j is totally geodesic, that is
precisely what we wanted to show.

2 The maximal cone Cn,k

Here we study doubly ruled submanifolds in maximal codimension and prove the
remaining results stated in the introduction. We first state a basic result on sub-
manifolds whose relative conullity distribution E⊥

0 is umbilical (cf. Lemma 6 i) and
ii − a) in [2]; see also Remark 14 below).

Lemma 10. Let Mn ⊂ Rn+p be a submanifold with constant index of relative nullity
n − 2 ≥ dim E0 = k > 0. Assume that E⊥

0 is totally umbilical in Mn. Then,
E⊥

0 is totally geodesic if and only if each point has a neighborhood V such that
V ⊂ Ln−k × Rk, where Ln−k is a submanifold of Rn−k+p. On the other hand, E⊥

0 is
nowhere totally geodesic if and only if each point has a neighborhood V such that
V ⊂ W n−k+1 × Rk−1, where W n−k+1 ⊂ Rn−k+1+p

∗ is a cone.

Proof: It is identical to the proof of Lemma 6 i) and ii − a) in [2].

As a corollary, we get the isometric version of Theorem 4. Similar result holds
for any semi-Riemannian space form since Lemma 10 also extends.

Theorem 11. Let Mn+k+r ⊂ Rn+k+r+p be a substantial (n+r, k+r)-ruled submani-
fold, with n, k, r ≥ 1. Then, p ≤ nk. If p > (n − 1)k, then Mn+k+r is congruent to
an open subset of either Nn+k ×Rr or CNn+k × Rr−1, where Nn+k is a (n, k)-ruled
submanifold in Rn+k+p or Sn+k+p, respectively.

Proof: It is a consequence of Proposition 8 and Lemma 10. Again, the description
is global in view of Remark 9.

We now show the linear uniqueness of Cn,k.

Proposition 12. Any substantial (n + 1, k + 1)-ruled cone Wn+k+1 ⊂ Rn+k+1+nk is
linearly equivalent to (an open subset of) Cn,k.

Proof: Let F1 and F2 be the rulings of Wn+k+1. Then, F0(x) = span{x} is
1-dimensional, for all x ∈ Wn+k+1. Fix y ∈ Wn+k+1 and let F0

1 = F1(y) (resp.
F0

2 = F2(y)) be the leaf of F1 (resp. F2) that contains y. Fix also the following
notations for indices:

1 ≤ i ≤ n, 0 ≤ j, l ≤ k.

Since F0
1 and F0

2 are both (open subsets of) linear subspaces, there are bases
{e0, . . . , en} of F0

1 and {v00, . . . , v0k} of F0
2 , with e0 = v00 = y, and such that

each one of the vectors is close enough to y. Thus, there is a leaf F i
2 of F2 such that
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ei ∈ F i
2. Moreover, there are a neighborhood y ∈ U ⊂ F0

2 and well defined smooth
maps ϕi : U ⊂ F0

2 → F i
2,

ϕi(x) = F1(x) ∩ F i
2 ∩ {z ∈ Rn+k+1+nk : ‖z‖ = ‖x‖, 〈z, x〉 > 0}.

It holds that ‖ϕi(x)‖ = ‖x‖, ϕi(y) = ‖y‖‖ei‖−1ei and ϕ0 = Id. Since we have
that {ϕ0(y), . . . , ϕn(y)} is a basis of F0

1 , for x ∈ F0
2 close enough to y we have that

{ϕ0(x), . . . , ϕn(x)} is a basis of F1(x). Therefore, h : Rn ×U → Rn+k+1+nk given by

h(t, x) = x +
∑

i

tiϕi(x) (15)

is a smooth parametrization of Wn+k+1 around y = h(0, y) since h(t, λx) = λh(t, x),
for λ ∈ R∗. Clearly, by fixing the line span{x} and moving t we parametrize the
leaves of F1. However, this is the general form of a cone with one ruled foliation
F1 of rank n + 1, but only n + 1 transversal rulings F0

2 , . . . , Fn
2 in its closure, since

there is no a priori linearity on the ϕi’s. We search for it as follows.
Take a basis {vi0, . . . , vik} of F i

2 and write ϕi =
∑

j ϕijvij . A key point is that, if
B = {vmj : 0 ≤ m ≤ n, 0 ≤ j ≤ k}, from (15) and Proposition 7 we get that

Wn+k+1 is substantial if and only if B is linearly independent. (16)

Since Wn+k+1 is doubly ruled, there is a smooth function s : Rn × U → Rn,
s = st(x) = (st

1(x), . . . , st
n(x)), such that, if we write x =

∑
j xjv0j , the map ht given

by

ht(x) = h(st(x), x) =
∑

j

(
xjv0j +

∑

i

st
i(x)ϕij(x)vij

)
(17)

parametrizes around y the leaf of F2 that passes through h(t, y). Observe that from
the substantiallity of Wn+k+1, no st

i nor ϕij can vanish identically. Because these
leaves are linear subspaces, taking partial derivatives in (17) yields, for each l, that

v0l +
∑

ij

∂(st
iϕij)

∂xl

vij ∈ span{ht(v00), . . . , ht(v0k)}.

In view of (16), we obtain that ∂
∂xl

(st
iϕij) = st

i(v0l)ϕij(v0l). Therefore,

st
i(x)ϕij(x) =

∑

l

xls
t
i(v0l)ϕij(v0l). (18)

Dividing the above by st
i we see that the functions st

i(v0l)/s
t
i do not depend on

t. Then, there are functions bil such that st
i(x) = bil(x)st

i(v0l). Since the left-
hand side does not depend on l, there are constants ail ∈ R∗ such that bil(x) =
ailbi(x) and st

i(v0l) = a−1
il ri(t), where bi = bi0 and ri(t) = st

i(v00). Thus, (18)
becomes bi(x)ϕij(x) =

∑
l xlc

l
ij , with cl

ij = a−1
il ϕij(v0l) ∈ R, and hence (17) is

ht(x) =
∑

j xj (v0j +
∑

i ri(t)wij) , where wij =
∑

l c
j
ilvil. From the regularity of

h, the substitution yi = ri(t) is just a change of coordinates in Rn and we get
h(y, x) =

∑
j xj (v0j +

∑
i yiwij), which parametrizes an open dense subset of a cone

that is linearly equivalent to Cn,k. The result now follows easily.
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Proof of Theorem 1: The inequality on p follows from Proposition 8. Assume
that p = nk, and consider QN

c ⊂ EN+1 as in the introduction. Therefore, the cone
over Mn+k+r, CM = {tx : t ∈ R∗, x ∈ M} ⊂ EN+1 is a substantial (n+k+r+1)-
dimensional (n+r+1, k+r+1)-ruled submanifold in maximal codimension nk. Since
these properties have nothing to do with the definite (or not) inner product in
EN+1, we can argue for such cones in RN+1 with the usual inner product that, by
Proposition 8 ii), have totally umbilical relative conullity E⊥. Since CM is a cone,
its conullity is nowhere totally geodesic and then, by Lemma 10, it has the structure

CM = Wn+k+1 × Rr ⊂ RN+1, (19)

where Wn+k+1 ⊂ Rn+k+1+nk should then be a (n + 1, k + 1)-ruled cone in maximal
codimension nk. The proof follows from Proposition 12.

Remark 13. Using (19) we can say a little more in Theorem 1 in terms of cylinders.
With the notations of the introduction, according to the position of the Rr factor
in (19) relative to QN

c , there exists T ∈ GL(N − r + 1, R) such that Mn+k+r ⊂ QN
c

is (an open subset of) one of the following:

1. c > 0. (T (Cn,k)×Rr)∩SN
c ⊂ SN

c ⊂ RN+1. Complete only for r = 0. Otherwise
its singular set is Sr−1

c = ({0} × Rr) ∩ SN
c .

2. c = 0. T (Cn,k) × Rr−1 ⊂ RN with r ≥ 1, if the factor Rr is not parallel to
RN = QN

0 ⊂ RN+1
∗ . Always singular with singular set Rr−1 = {0} × Rr−1.

3. c = 0. (T (Cn,k) ∩ RN−r
D ) × Rr ⊂ RN−r

D × Rr = RN , if the factor Rr is parallel
QN

0 . All are complete. Observe that T (Cn,k) ∩ RN−r
D = T (N n,k

T ∗D).

4. c < 0. (T (Cn,k) × Lr) ∩ HN
c ⊂ HN

c ⊂ RN−r+1 × Lr = LN+1 with r ≥ 1,
if the factor Rr is Lorentzian. Always singular, with singular set Hr−1

c =
({0} × Lr) ∩ HN

c .

5. c < 0. (T (Cn,k) × Rr) ∩ HN
c ⊂ HN

c ⊂ LN−r+1 × Rr = LN+1, if the factor Rr is
Riemannian. All complete.

6. c < 0. (T (Cn,k) × Or) ∩ HN
c ⊂ HN

c ⊂ ON−r+1 × Or = LN+1, if the factor
Rr = Or is degenerate: here we write LN+1 as the sum of degenerate subspaces.
Complete.

The r-cylinders correspond precisely to cases 1, 3 and 5, according to the sign of c.
Hence, Corollary 5 says that we can forget about cases 2, 4 and 6 when working in
the conformal setting.

Remark 14. We take this opportunity to observe that Lemma 6 in [2] does not hold
for dim E0 = n− 1 since flat hypersurfaces are generically noncylindrical. Moreover,
its part ii− b) is incomplete, since it is missing the product case that corresponds to
a degenerate factor, like case 6 in Remark 13. The corresponding case in Theorem 3
part (I) ii) − b) in [2] is thus also missing. However, the description using warped
product representations that follows that lemma is correct and is an alternative and
more intrinsic way to describe all cases. Observe also that, similarly as Remark 13,
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for c = 0 the lemma is correct, for c > 0 can be improved by taking c̃ = c (i.e.,
totally geodesic), and for c < 0 there are only three cases, according with the sign
of c̃.

Remark 15. Let us argue that Cn,k, and hence cN n,k,r
L , is embedded. Given

0 ≤ i′ ≤ n, 0 ≤ j′ ≤ k, let Ui′j′ be the open dense subset Ui′j′ = {S ∈ R(n+1)×(k+1) :
Si′j′ 6= 0}. Let f = fi′j′ : Ui′j′ → Rn×k be the map given by f(S) = (Si′j′Sij −
Si′jSij′)i6=i′,j 6=j′. Then, f−1(0) = Cn,k ∩ Ui′j′ are all regular points of f because
d/dt|t=0(f(S + tEij)) = Si′j′Eij , for all i 6= i′, j 6= j′ and S ∈ Cn,k ∩ Ui′j′, where Eij

stands for the matrix in R(n+1)×(k+1) that has zeroes in all entries except a one at
(i, j).

Proof of Corollary 2: The first part follows from Remark 13 cases 2 and 3. For
the second, assume we have an affine isomorphism that carries N n,k

D to N n,k
D′ . This is

equivalent to have L ∈ GL(N − r + 1, R) that takes one into the other extrinsically.
Since L is linear and Cn,k is a cone, we have that Cn,k is invariant under L and hence
under L−1. Because any rank s matrix is the sum of s rank one matrices, we easily
see that both L and L−1 must preserve ranks. Therefore, from L(N n,k

D ) = N n,k

L−1∗D
,

all we have to see is that L∗ must also preserves ranks, or, equivalently, Cn,k.
If L preserve ranks, then we have a bilinear map (x, y) 7→ L(xty) ∈ Cn,k ∪ {0},

x ∈ Rn+1, y ∈ Rk+1. Thus, by fixing y and moving x, it is easy to see that there
are well defined (up to factors) A ∈ GL(n + 1, R), B ∈ GL(k + 1, R) such that
L(xty) = (Ax)t(By). Therefore, L∗(xty) = (A∗x)t(B∗y) also preserves Cn,k.

Proof of Corollary 3: Take two complete leaves of F1. Since they cannot intersect
and they are obtained as the intersection between the sphere and linear (n + r +1)-
dimensional (complete) subspaces, we have that n + k + r + p + 1 ≥ 2(n + r + 1).
Hence, by Theorem 1, n + r + 1− k ≤ p ≤ nk. The proof follows from the fact that
no 1N n,k,r

L is complete if r > 0; see Remark 13 case 1.

Proof of Corollary 5: It follows immediately from Theorems 1 and 4.

References

[1] M. Dajczer et all, “Submanifolds and isometric immersions”. Math. Lec. Series
13, Publish or Perish, Inc. Houston, 1990.

[2] M. Dajczer, L. Florit and R. Tojeiro, On deformable hypersurfaces in space
forms. Ann. Mat. Pura Appl. 174 (1998), 361–390.

[3] M. Dajczer, L. Florit and R. Tojeiro, On a class of submanifolds carrying an
extrinsic totally umbilical foliation. Israel J. Math. 125 (2001), 203–220.

[4] M. Dajczer, L. Florit and R. Tojeiro, Reducibility of Dupin submanifolds.
Illinois J. Math. 49 (2005), 759-791.
Preprint at http://www.preprint.impa.br/Shadows/SERIE A/2001/103.html.

[5] Hilbert, D., and Cohn-Vossen, S., “Geometry and the imagination”. Chelsea
Publishing Company, New York, N.Y., 1952.



Doubly ruled submanifolds in space forms 701

[6] Leung, D., and Nomizu, K., The axiom of spheres in Riemannian Geometry.
J. Diff. Geometry 5 (1971), 487–489.

[7] S. T. Yau, Submanifolds with constant mean curvature I. Amer. J. Math. 96
(1974), 346–366.

IMPA
Estrada Dona Castorina, 110
22460–320 – Rio de Janeiro – Brazil
email : luis@impa.br


