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Abstract

We construct (k±1)-regular graphs which provide sequences of expanders
by adding or substracting appropriate 1-factors from given sequences of k-
regular graphs. We compute numerical examples in a few cases for which the
given sequences are from the work of Lubotzky, Phillips, and Sarnak (with
k − 1 the order of a finite field). If k + 1 = 7, our construction results in a
sequence of 7-regular expanders with all spectral gaps at least 6−2

√
5 ≈ 1.52;

the corresponding minoration for a sequence of Ramanujan 7-regular graphs
(which is not known to exist) would be 7 − 2

√
6 ≈ 2.10.

1 Introduction

Let X = (V,E) be a simple finite graph with n vertices, where V denotes the vertex
set and E the set of geometrical edges of X. The adjacency matrix A ofX, with rows
and columns indexed by V , is defined by Av,w = 1 if there exists an edge connecting v
and w, and Av,w = 0 otherwise (in particular Av,v = 0). The eigenvalues of X, which
are those of A, constitute a decreasing sequence λ0(X) ≥ λ1(X) ≥ . . . ≥ λn−1(X).
The spectral gap λ0(X)−λ1(X) of X is positive if and only if X is connected. Let us
assume from now on that X is k-regular for some k ≥ 3, namely that

∑

w Av,w = k
for all v ∈ V , so that λ0(X) = k.

Recall that, for any infinite sequence (Xi)i∈I of connected k-regular simple fi-
nite graphs with increasing vertex sizes, we have the Alon-Boppana inequality
lim infi→∞ λ1(Xi) ≥ 2

√
k − 1. A graph X is said to be a Ramanujan graph if it
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is connected and if |µ| ≤ 2
√
k − 1 for any eigenvalue µ 6= ±k of X. From elab-

orate arithmetic constructions, we know explicit infinite sequences of Ramanujan
graphs for degree k when k − 1 is the order of a finite field; but the existence of
such sequences is an open problem for other degrees, for example when k = 7. It is
thus interesting to find sequences of expanders of degree k, namely infinite sequences
(Xi)i∈I of k-regular connected simple finite graphs with increasing vertex sizes such
that infi∈I(k − λ1(Xi)) is strictly positive, and indeed as large as possible (short of
being equal to k − 2

√
k − 1).

For all this, see for example [Lubot–94], [Valet–97], [Colin–98], and [DaSaV–03].

The object of the present Note is to examine a procedure of construction of
sequences of expanders (Xi)i∈I of degree k by perturbation of sequences of Ra-
manujan graphs. When k − l − 1 is the order of a finite field, we obtain estimates
λ1(Xi) ≤ l + 2

√
k − l − 1; for example, for k = 7 and l = 1, this corresponds to a

spectral gap
7 − λ1(Xi) ≥ 6 − 2

√
5 ≈ 1.52 for all i ∈ I,

to be compared with the Alon-Boppana lower bound for the spectral gap:

7 − lim inf
i∈I

λ1(Xi) ≤ 7 − 2
√

6 ≈ 2.10.

We insist on finding explicit constructions, but we record however the following
results of J. Friedman based on random techniques: for all k ≥ 3 and all ǫ > 0, there
exist sequences (Xi)i∈I of connected k-regular simple finite graphs with increasing

vertex sizes and with λ1(Xi) ≤ 2
√
k − 1 + ǫ for all i ∈ I. See [Fried–04], and also

[Fried–94].

Let X = (V,E) be a graph. If X is not bipartite, we denote by X = (V,E)
the complement of X; two distinct vertices are adjacent in X if and only if they are
not so in X. If X is bipartite, given with a bipartition V = V0 ⊔ V1, we denote by
X = (V,E) the bipartite complement of X; two vertices v ∈ V0, w ∈ V1 are adjacent
in X if and only if they are not in X. A matching of a graph X is a subset M of E
such that any vertex x ∈ V is incident with at most one edge of M , and a perfect
matching (also called 1-factor) is a subset F of E such that any vertex x ∈ V is
incident with exactly one edge of F .

Let X = (V,E) be a graph. If F is a perfect matching of X, we denote by X−F
the graph (V,E \ F ); if X is k-regular, then X − F is (k − 1)-regular. If F is a

perfect matching of X, we denote by X + F the graph X − F ; if X is k-regular,
then X + F is (k + 1)-regular.

The basic observation for the present Note is the set of inequalities

|λj(X ± F ) − λj(X)| ≤ 1

for any perfect matching F of X (for X − F ) or of X (for X + F ), and for all
j ∈ {0, . . . , n− 1}, where n = |V | (Proposition 2). We can apply this to the Ra-
manujan graphs Xp,q and their complements (notation of [DaSaV-03], see below). In
Section 3, we apply an algorithm for finding perfect matchings in regular bipartite
graphs (thus concentrating on pairs (p, q) for which the graph Xp,q is bipartite). In
conclusion, we report some numerical computations.
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2 Graphs of the form Xp,q ± F

Let us recall the definition of the graphs Xp,q.
If R is a commutative ring with unit, the Hamilton quaternion algebra H(R)

over R is the free module R4 with basis {1, i, j, k}, where multiplication is defined
by i2 = j2 = k2 = −1, and ij = −ji = k, plus circular permutations of i, j, k. A
quaternion q = a0 + a1i+ a2j + a3k has a conjugate q = a0 − a1i− a2j − a3k and a
norm N(q) = qq = a2

0
+ a2

1
+ a2

2
+ a2

3
.

Let p ∈ N be an odd prime. If p ≡ 1 (mod 4), a theorem of Jacobi shows that
there are exactly p+1 quaternions in H(Z) of norm p of the form a0 +a1i+a2j+a3k
with a0 ≡ 1 (mod 2), and a0 ≥ 1. These occur in pairs (α, α); we select arbitrarily
one, say αl, from each pair, and we set

Sp = {α1, α1, . . . , αs, αs} with 2s = p+ 1.

If p ≡ 3 (mod 4), there are quaternions in H(Z) of norm p of the form a0 + a1i +
a2j+a3k with a0 ≡ 0 (mod 2), and a0 ≥ 0. From those with a0 ≥ 2, say 2s of them,
we obtain α1, . . . , αs as above. Those of the form a1i+ a2j + a3k, say 2t of them 1 ,
occur in pairs (β,−β); we select arbitrarily one, say βm, from each pair, and we set

Sp = {α1, α1, . . . , αs, αs, β1, . . . , βt}.

Observe that t/4 is the number of solutions in N of the equation a2

1
+ a2

2
+ a2

3
= p,

and that we have again |Sp| = 2s+ t = p+1 by Jacobi’s theorem. Observe also that
we can have s = 0 (case of p = 3), as well as t = 0 (case of p ≡ 7 (mod 8)), or both
s and t positive (case of p = 19, with s = 4 and t = 12).

Let q be another odd prime, q 6= p, and let τq : H(Z) −→ H(Fq) denote reduction
modulo q. The equation x2 +y2 +1 = 0 has solutions in Fq. We choose one solution;
then the mapping ψq : H(Fq) −→M2(Fq) defined by

ψq(a0 + a1i+ a2j + a3k) =

(

a0 + a1x+ a3y −a1y + a2 + a3x
−a1y − a2 + a3x a0 − a1x− a3y

)

is an algebra isomorphism and ψq (τq(Sp)) is in the group GL2(q) of invertible ele-
ments of M2(Fq). We denote by φ : GL2(q) −→ PGL2(q) the reduction modulo the
centre, and we set

Sp,q = φ
(

ψq (τq(Sp))
)

⊂ PGL2(q).

It follows from the definitions that Sp,q is symmetric: if s ∈ Sp,q is the image of
αl ∈ Sp (notation as above), then s−1 is the image of αl; if s is the image of βm ∈ Sp,
then s2 = 1. Moreover, it is known that |Sp,q| = p + 1. There are now two cases to
consider.

Either p is a square modulo q. Then Sp,q ⊂ PSL2(q) and indeed Sp,q generates
PSL2(q). By definition, Xp,q is the Cayley graph of PSL2(q) with respect to Sp,q;
more precisely, Xp,q = (V,E) with V = PSL2(q) and {v, w} ∈ E if v−1w ∈ Sp,q. It

1Observe that 2t is a multiple of 8, since each of a1, a2, a3 is odd, in particular not 0, so that
each sign change provides another writing of p as a sum of three squares.
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is a (p+1)-regular graph with 1

2
q(q2 − 1) vertices which is connected, non-bipartite,

and which is a Ramanujan graph.
Or p is not a square modulo q. Then Sp,q ∩ PSL2(q) = ∅ and Sp,q generates

PGL2(q). By definition, Xp,q is the Cayley graph of PGL2(q) with respect to Sp,q.
It is a (p+ 1)-regular bipartite graph with q(q2 − 1) vertices which is connected and
which is a Ramanujan graph.

See [DaSaV–03] for proofs of a large part of the facts stated above, including the
connectedness of the graphsXp,q when p ≥ 5 and q > p8, and the expanding property
of this family. For the proof that (Xp,q)q is actually a family 2 of Ramanujan graphs,
see the original papers ([LuPhS–88], with a large part obtained independently in
[Margu–88]), as well as [Sarna–90].

Table I shows the spectrum of X3,q for q ∈ {5, 7, 11} and Table II that of X5,q

for q ∈ {7, 11}. Numerical computations of eigenvalues reported in this paper have
been computed with Mathlab.

Proposition 1. If the graph Xp,q is bipartite, Xp,q and its bipartite complement
Xp,q have perfect matchings.

Proof More generally, any bipartite graph which is regular of degree at least 1
has a perfect matching, as it follows of P. Hall’s marriage theorem; see for example
Corollary 1.1.4 and Lemma 1.4.16 in [LovPl–86]. Here is another reason for Xp,q

(bipartite or not): any connected vertex-transitive graph of even order has a perfect
matching (Section 3.5 in [GodRo–01]); this applies in particular to Cayley graphs
of finite groups of even order, such as PGL2(q) and PSL2(q). �

Proposition 2. Let X = (V,E) be a finite graph with n vertices and with eigenvalues
λ0 ≥ λ1 ≥ . . . ≥ λn−1. Let F be a matching of X [respectively of the complement X]
and let µ0 ≥ µ1 . . . ≥ µn−1 be the eigenvalues of X − F [respectively X + F ]. Then
|µj − λj| ≤ 1 for j ∈ {0, 1, . . . , n− 1}.

Proof Outside diagonal entries, the adjacency matrix AF of (V, F ) is a ma-
trix of permutation which is a nonempty product of transpositions with disjoint
supports, one transposition for each edge in F . Thus ‖AF‖ ≤ 1. Here, the
norm of a matrix acting on the Euclidean space R

V is the operator norm ‖AF‖ =

sup
{

‖Af‖2 | f ∈ R
V , ‖f‖2 ≤ 1

}

, where ‖f‖2

2
=
∑

v∈V |f(v)|2.
Thus Proposition 1 follows from the classical Courant-Fischer-Weyl minimax

principle, according to which eigenvalues of symmetric operators are norms of ap-
propriate restrictions of these operators. See e.g. Chapter III in [Bhati–97]. �

2The family is indexed by the set of all odd primes q, and p is a fixed arbitrary odd prime.
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3 Tables

There are several standard efficient algorithms to find a perfect matching F in a
graph X; see [LovPl–86] and [West–01], among others. We will not describe here
the details of the algorithm we have used. Eigenvalues of X − F can then be
computed with Mathlab.

The eigenvalues of a graph of the form Xp,q−F depend on the choice of F . Table
III gives for each of three pairs (p, q) the values of the spectral gaps p−λ1(X

p,q −F )
corresponding to four different F . Table III shows that there are situations (p =
5, q = 7) with λ0(X − F ) = k − 1 < λ0(X) = k and λ1(X − F ) > λ1(X).

Table IV shows the full spectrum of X3,5−F for one specific F . Tables V to VII
show the ten largest eigenvalues of three graphs of the form Xp,q +F . Observe that
the multiplicities in Tables IV to VII are much less than those of the unperturbed
graphs.

Table I: spectra of X3,q

q=5 q=7 q=11
eigenvalues multiplicities eigenvalues multiplicities eigenvalues multiplicities

-4.0000 1 -4.0000 1 -3.2361 30
-3.0000 12 -3.0000 24 -3.0000 33
-2.0000 28 -2.8284 30 -2.7321 10
-1.0000 4 -2.0000 28 -2.6180 24
0.0000 30 -1.4142 24 -2.3723 10
1.0000 4 -1.0000 40 -2.0468 36
2.0000 28 0.0000 42 -2.0000 10
3.0000 12 1.0000 40 -1.6180 36
4.0000 1 1.4142 24 -1.5616 33

2.0000 28 -0.9191 36
2.8284 30 -0.7321 30
3.0000 24 -0.3820 24
4.0000 1 0.0000 30

0.3820 12
0.6180 36
0.7321 10
1.0000 52
1.2361 30
1.9191 36
2.0000 20
2.5616 33
2.6180 12
2.7321 30
3.0468 36
3.3723 10
4.0000 1
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Table II: spectra of X5,q

q=7 q=11
eigenvalues multiplicities eigenvalues multiplicities

-6.0000 1 -4.0243 36
-4.0000 21 -3.7321 30
-3.0000 16 -3.0000 65
-2.8284 42 -2.2361 30
-2.0000 21 -1.7321 10
-1.4142 12 -1.6180 60
-1.0000 48 -1.3723 10
0.0000 14 -1.2361 12
1.0000 48 -0.5616 33
1.4142 12 -0.2679 30
2.0000 21 -0.1638 36
2.8284 42 0.6180 60
3.0000 16 1.0000 30
4.0000 21 1.7321 10
6.0000 1 1.7818 36

2.2361 30
3.0000 50
3.2361 12
3.4063 36
3.5616 33
4.3723 10
6.0000 1

Table III: spectral gaps for Xp,q − F
p=3,q=5 p=3,q=7 p=5,q=7
0.4457 0.2499 0.7910
0.3025 0.1862 0.7732
0.2993 0.1785 0.7367
0.2702 0.0272 0.7152

Table IV: spectrum of X3,5 − F
eigenvalues multiplicities eigenvalues multiplicities eigenvalues multiplicities

-3.0000 1 -0.8302 4 1.2929 8
-2.5543 8 -0.5086 8 1.8829 8
-2.5450 4 -0.4394 4 2.0000 6
-2.1542 4 0.0000 4 2.1542 4
-2.0000 6 0.4394 4 2.5450 4
-1.8829 8 0.5086 8 2.5543 8
-1.2929 8 0.8302 4 3.0000 1
-1.0000 3 1.0000 3
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Table V: largest eigenvalues for X3,5 + F
eigenvalues multiplicities eigenvalues multiplicities eigenvalues multiplicities

3.2578 1 3.2163 1 3.1707 1
3.3225 1 3.3208 1 3.1998 1
3.3425 1 3.3431 1 3.2214 1
3.4295 1 3.4417 1 3.2418 1
3.4859 1 3.4992 1 3.3046 1
3.5140 1 3.5358 1 3.5525 1
3.5687 1 3.6211 1 3.5653 1
3.5950 1 3.6822 1 3.5935 1
3.6758 1 3.8466 1 3.6547 1
5.0000 1 5.0000 1 5.0000 1

Table VI: largest eigenvalues for X3,7 + F
eigenvalues multiplicities eigenvalues multiplicities eigenvalues multiplicities

3.6042 1 3.6199 1 3.6138 1
3.6130 1 3.6478 1 3.6431 1
3.6349 1 3.6594 1 3.6524 1
3.6728 1 3.6826 1 3.6726 1
3.6892 1 3.6996 1 3.6922 1
3.6971 1 3.7203 1 3.7131 1
3.7073 1 3.7468 1 3.7275 1
3.7505 1 3.7548 1 3.7461 1
3.7697 1 3.7752 1 3.7985 1
5.0000 1 5.0000 1 5.0000 1

Table VII: largest eigenvalues for X5,7 + F
eigenvalues multiplicities eigenvalues multiplicities eigenvalues multiplicities

4.3702 1 4.3388 1 4.3229 1
4.4015 1 4.3738 1 4.3405 1
4.4271 1 4.4326 1 4.3882 1
4.4625 1 4.4790 1 4.4117 1
4.4888 1 4.5124 1 4.4671 1
4.4971 1 4.5618 1 4.5585 1
4.5819 1 4.5925 1 4.5875 1
4.5976 1 4.6417 1 4.6341 1
4.6512 1 4.6892 1 4.7260 1
7.0000 1 7.0000 1 7.0000 1
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exposé 829, Astérisque, 245, Soc. Math. France 1997, pages 247–296.

[West–01] D.B. West, Introduction to graph theory, second edition, Prentice Hall
2001.

Section de Mathématiques,
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