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Abstract

Let X,Y be Banach modules over a C∗-algebra and let r1, · · · , rn ∈ (0,∞)
be given. We prove the Hyers–Ulam–Rassias stability of the following func-
tional equation in Banach modules over a unital C∗-algebra:
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rif(xi).(0.1)

We show that if r1 = · · · = rn = r and an odd mapping f : X → Y satisfies the
functional equation (0.1) then the odd mapping f : X → Y is Cauchy additive.
As an application, we show that every almost linear bijection h : A → B of a
unital C∗-algebra A onto a unital C∗-algebra B is a C∗-algebra isomorphism
when h((nr)duy) = h((nr)du)h(y) for all unitaries u ∈ A, all y ∈ A, and all
d ∈ Z.

1 Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively. Consider

f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each fixed
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x ∈ X. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖f(x + y) − f(x) − f(y)‖ ≤ θ(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [24] showed that there exists a unique R-linear

mapping T : X → Y such that

‖f(x) − T (x)‖ ≤
2θ

2 − 2p
||x||p

for all x ∈ X. A number of mathematicians were attracted to this result of Th.M.

Rassias and stimulated to investigate the stability problems of functional equations.

The stability phenomenon that was introduced and proved by Th.M. Rassias is called

the Hyers–Ulam–Rassias stability. Găvruta [2] generalized the Rassias’ result: Let

G be an abelian group and Y a Banach space. Denote by ϕ : G × G → [0,∞) a

function such that

ϕ̃(x, y) =
∞∑

j=0

1

2j
ϕ(2jx, 2jy) < ∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y) − f(x) − f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such that

‖f(x) − T (x)‖ ≤
1

2
ϕ̃(x, x)

for all x ∈ G. C. Park [10] applied the Găvruta’s result to linear functional equations

in Banach modules over a C∗-algebra. The stability problems of several functional

equations have been extensively investigated by a number of authors and there are

many interesting results concerning this problem. Several functional equations have

been investigated in [4]–[6], [10]–[12], [14]–[31]. Many authors have studied the

structure of C∗-algebras (see [9], [13]).

In [1], S. Czerwik proved the Hyers–Ulam–Rassias stability of the quadratic

functional equation. J.M. Rassias [22, 23] solved the stability problem of Ulam for

the Euler–Lagrange type quadratic functional equation

f(rx + sy) + f(sx − ry) = (r2 + s2)[f(x) + f(y)].

Recently, Jun and Kim [7] solved the stability problem of Ulam for another Euler–

Lagrange type quadratic functional equation. Jun and Kim [8] introduced and

investigated the following quadratic functional equation of Euler–Lagrange type
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whose solution is said to be a generalized quadratic mapping of Euler–Lagrange

type.

In this paper, we introduce the following functional equation

n∑

i=1

riL




n∑

j=1

rj(xi − xj)



+

(
n∑

i=1

ri

)
L

(
n∑

i=1

rixi

)
(1.1)

=

(
n∑

i=1

ri

)
n∑

i=1

riL(xi), ri ∈ (0,∞)

whose solution is called a generalized Euler–Lagrange type additive mapping. We

investigate the Hyers–Ulam–Rassias stability of a generalized Euler–Lagrange type

additive mapping in Banach modules over a C∗-algebra. These results are applied

to investigate C∗-algebra isomorphisms between unital C∗-algebras.

2 Hyers–Ulam–Rassias stability of a generalized Euler–Lag range

type additive mapping in Banach modules over a C∗-algebra

Throughout this section, assume that A is a unital C∗-algebra with norm | · | and

unitary group U(A), and that X and Y are left Banach modules over a unital

C∗-algebra A with norms || · || and ‖ · ‖, respectively. We set N :=
∑n

i=1 ri.

For a given mapping f : X → Y and a given u ∈ U(A), we define Duf : Xn → Y

by

Duf(x1, · · · , xn) :=
n∑

i=1

rif




n∑

j=1

rj(uxi − uxj)


+

(
n∑

i=1

ri

)
f

(
n∑

i=1

riuxi

)

−

(
n∑

i=1

ri

)
n∑

i=1

riuf(xi)

for all x1, · · · , xn ∈ X.

Lemma 2.1. Assume that a mapping L : X → Y satisfies the functional equation

(1.1) and that L(0) = 0. Then we have

L(Nkx) = NkL(x) (2.1)

for all x ∈ X and all k ∈ Z.

Proof. Putting x1 = · · · = xn = x in (1.1), we get NL(Nx) = N2L(x) for all x ∈ X.

So we get

L(Nkx) = NkL(x) (2.2)

for all x ∈ X by induction on k ∈ N.
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It follows from (2.2) that

L(
x

Nk
) =

1

Nk
L(x)

for all x ∈ X and all k ∈ N. So we get the equality (2.1). �

We investigate the Hyers–Ulam–Rassias stability of a generalized Euler–Lagrange

type additive mapping in Banach spaces.

Theorem 2.2. Let f : X → Y be a mapping satisfying f(0) = 0 for which there is

a function ϕ : Xn → [0,∞) such that

ϕ̃(x1, · · · , xn) :=
∞∑

j=0

1

N j
ϕ(N jx1, · · · , N jxn) < ∞, (2.3)

‖D1f(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn) (2.4)

for all x1, · · · , xn ∈ X. Then there exists a unique generalized Euler–Lagrange type

additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
1

N2
ϕ̃(x, · · · , x︸ ︷︷ ︸

n times

) (2.5)

for all x ∈ X.

Note that if N = 1 in (2.3), then ϕ is identically zero. So f = L is itself a

generalized Euler–Lagrange type additive mapping. Thus we assume that N 6= 1.

Proof. Letting x1 = · · · = xn = x in (2.4), we get the following inequality
∥∥∥Nf(Nx) − N2f(x)

∥∥∥ ≤ ϕ(x, · · · , x︸ ︷︷ ︸
n times

) (2.6)

for all x ∈ X. It follows from (2.6) that
∥∥∥∥∥f(x) −

f(Nx)

N

∥∥∥∥∥ ≤
1

N2
ϕ(x, · · · , x︸ ︷︷ ︸

n times

) (2.7)

for all x ∈ X. Now applying a standard procedure of direct method [3, 24] to the

inequality (2.7), we obtain that for all nonnegative integers k, l with k > l

∥∥∥∥∥
f(N lx)

N l
−

f(Nkx)

Nk

∥∥∥∥∥ ≤
1

N2

k−1∑

j=l

1

N j
ϕ(N jx, · · · , N jx︸ ︷︷ ︸

n times

) (2.8)

for all x ∈ X. Since the right hand side of (2.8) tends to zero as l → ∞, the sequence

{ f(Nkx)
Nk } is a Cauchy sequence for all x ∈ X, and thus converges by the completeness

of Y . Thus we can define a mapping L : X → Y by

L(x) = lim
k→∞

f(Nkx)

Nk



Euler–Lagrange type additive mapping 623

for all x ∈ X. Letting l = 0 in (2.8), we obtain
∥∥∥∥∥f(x) −

f(Nkx)

Nk

∥∥∥∥∥ ≤
1

N2

k−1∑

j=0

1

N j
ϕ(N jx, · · · , N jx︸ ︷︷ ︸

n times

) (2.9)

for all x ∈ X and all k ∈ N. Taking the limit as k → ∞ in (2.9), we obtain the

desired inequality (2.5).

It follows from (2.3) and (2.4) that

‖D1L(x1, · · · , xn)‖ = lim
k→∞

1

Nk
‖D1f(Nkx1, · · · , Nkxn)‖

≤ lim
k→∞

1

Nk
ϕ(Nkx1, · · · , Nkxn) = 0. (2.10)

Therefore, the mapping L : X → Y satisfies the equation (1.1) and hence L is a

generalized Euler–Lagrange type additive mapping.

To prove the uniqueness, let L′ be another generalized Euler–Lagrange type

additive mapping satisfying (2.5). By Lemma 2.1, we get L′(Nkx) = NkL′(x) for

all x ∈ X and all k ∈ N. Thus we have, for any positive integer k,

‖L(x) − L′(x)‖ ≤
1

Nk

{∥∥∥∥L(Nkx) − f(Nkx)
∥∥∥∥+

∥∥∥∥f(Nkx) − L′(Nkx)
∥∥∥∥
}

≤
2

N2

∞∑

j=0

1

Nk+j
ϕ(Nk+jx, · · · , Nk+jx︸ ︷︷ ︸

n times

).

Taking the limit as k → ∞, we conclude that L(x) = L′(x) for all x ∈ X. �

Corollary 2.3. Let ǫ ≥ 0 and let p be a real number with 0 < p < 1 if N > 1 and

with p > 1 if N < 1. Assume that a mapping f : X → Y satisfies the inequality

‖D1f(x1, · · · , xn)‖ ≤ ǫ
n∑

j=1

||xj||
p

for all x1, · · · , xn ∈ X. Then there exists a unique generalized Euler–Lagrange type

additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
nǫ

N2 − Np+1
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xn) := ǫ
∑n

j=1 ||xj ||
p, and apply Theorem 2.2. �

Theorem 2.4. Let f : X → Y be a mapping satisfying f(0) = 0 for which there is

a function ϕ : Xn → [0,∞) such that

ϕ̃(x1, · · · , xn) :=
∞∑

j=1

N jϕ(
x1

N j
, · · · ,

xn

N j
) < ∞, (2.11)

‖D1f(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn) (2.12)
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for all x1, · · · , xn ∈ X. Then there exists a unique generalized Euler–Lagrange type

additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
1

N2
ϕ̃(x, · · · , x︸ ︷︷ ︸

n times

) (2.13)

for all x ∈ X.

Proof. It follows from (2.6) that
∥∥∥∥f(x) − Nf(

1

N
x)
∥∥∥∥ ≤

1

N
ϕ(

x

N
, · · · ,

x

N︸ ︷︷ ︸
n times

) (2.14)

for all x ∈ X. Now applying a standard procedure of direct method [3, 24] to the

inequality (2.14), we obtain that for all nonnegative integers k, l with k > l

∥∥∥∥N
lf(

x

N l
) − Nkf(

x

Nk
)

∥∥∥∥ ≤
1

N2

k∑

j=l+1

N jϕ(
x

N j
, · · · ,

x

N j
︸ ︷︷ ︸

n times

) (2.15)

for all x ∈ X. Since the right hand side of (2.15) tends to zero as l → ∞, the

sequence {Nkf( x
Nk )} is a Cauchy sequence for all x ∈ X, and thus converges by the

completeness of Y . Thus we can define a mapping L : X → Y by

L(x) = lim
k→∞

Nkf(
x

Nk
)

for all x ∈ X. Letting l = 0 in (2.15), we obtain

∥∥∥∥f(x) − Nkf(
x

Nk
)

∥∥∥∥ ≤
1

N2

k∑

j=1

N jϕ(
x

N j
, · · · ,

x

N j
︸ ︷︷ ︸

n times

) (2.16)

for all x ∈ X and all k ∈ N. Taking the limit as k → ∞ in (2.16), we obtain the

desired inequality (2.13).

The rest of the proof is similar to the proof of Theorem 2.2. �

Corollary 2.5. Let ǫ ≥ 0 and let p be a real number with 0 < p < 1 if N < 1 and

with p > 1 if N > 1. Assume that a mapping f : X → Y satisfies the inequality

‖D1f(x1, · · · , xn)‖ ≤ ǫ
n∑

j=1

||xj ||
p

for all x1, · · · , xn ∈ X. Then there exists a unique generalized Euler–Lagrange type

additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
nǫ

Np+1 − N2
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xn) := ǫ
∑n

j=1 ||xj||
p, and apply Theorem 2.4. �
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3 Hyers–Ulam–Rassias stability of linear mappings in Banac h

modules over a C∗-algebra

Throughout this section, assume that r1 = · · · = rn = r ∈ (0,∞). Let A be a unital

C∗-algebra with norm | · | and unitary group U(A), and let X and Y be left Banach

modules over a unital C∗-algebra A with norms || · || and ‖ · ‖, respectively.

Lemma 3.1. If an odd mapping L : X → Y satisfies (1.1) for all x1, x2, · · · , xn ∈ X,

then L is Cauchy additive.

Proof. Assume that L : X → Y satisfies (1.1) for all x1, x2, · · · , xn ∈ X.

Note that L(0) = 0 and L(−x) = −L(x) for all x ∈ X since L is an odd mapping.

Putting x1 = x, x2 = y and x3 = · · · = xn = 0 in (1.1), we get

NL(rx + ry) = Nr
(
L(x) + L(y)

)
(3.1)

for all x, y ∈ X. Letting y = 0 in (3.1), NL(rx) = NrL(x) for all x ∈ X. So

NrL(x + y) = Nr
(
L(x) + L(y)

)

for all x, y ∈ X. Thus L is Cauchy additive. �

Theorem 3.2. Let f : X → Y be an odd mapping for which there is a function

ϕ : Xn → [0,∞) such that

ϕ̃(x1, · · · , xn) :=
∞∑

j=0

1

(nr)j
ϕ((nr)jx1, · · · , (nr)jxn) < ∞, (3.2)

‖Duf(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn) (3.3)

for all u ∈ U(A) and all x1, · · · , xn ∈ X. Then there exists a unique A-linear

generalized Euler–Lagrange type additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
1

(nr)2
ϕ̃(x, · · · , x︸ ︷︷ ︸

n times

) (3.4)

for all x ∈ X.

Proof. Note that f(0) = 0 and f(−x) = −f(x) for all x ∈ X since f is an odd

mapping. Let u = 1 ∈ U(A). By Theorem 2.2, there exists a unique generalized

Euler–Lagrange type additive mapping L : X → Y satisfying (3.4).

By the assumption, for each u ∈ U(A), we get

‖DuL(x, 0, · · · , 0︸ ︷︷ ︸
n − 1 times

)‖ = lim
d→∞

1

(nr)d
‖Duf((nr)dx, 0, · · · , 0︸ ︷︷ ︸

n − 1 times

)‖

≤ lim
d→∞

1

(nr)d
ϕ((nr)dx, 0, · · · , 0︸ ︷︷ ︸

n − 1 times

) = 0
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for all x ∈ X. So

nrL(rux) = nr · ruL(x)

for all u ∈ U(A) and all x ∈ X. By (3.1),

L(ux) =
1

r
L(rux) = uL(x) (3.5)

for all u ∈ U(A) and all x ∈ X.

By the same reasoning as in the proofs of [16] and [19],

L(ax + by) = L(ax) + L(by) = aL(x) + bL(y)

for all a, b ∈ A(a, b 6= 0) and all x, y ∈ X. And L(0x) = 0 = 0L(x) for all x ∈ X.

So the unique generalized Euler–Lagrange type additive mapping L : X → Y is an

A-linear mapping. �

Corollary 3.3. Let ǫ ≥ 0 and let p be a real number with 0 < p < 1 if nr > 1 and

with p > 1 if nr < 1. Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xn)‖ ≤ ǫ
n∑

j=1

||xj||
p

for all u ∈ U(A) and all x1, · · · , xn ∈ X. Then there exists a unique A-linear

generalized Euler–Lagrange type additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
nǫ

(nr)2 − (nr)p+1
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xn) = ǫ
∑n

j=1 ||xj||
p, and apply Theorem 3.2. �

Theorem 3.4. Let f : X → Y be an odd mapping for which there is a function

ϕ : Xn → [0,∞) satisfying (3.3) such that

ϕ̃(x1, · · · , xn) :=
∞∑

j=1

(nr)jϕ(
1

(nr)j
x1, · · · ,

1

(nr)j
xn) < ∞

for all x1, · · · , xn ∈ X. Then there exists a unique A-linear generalized Euler–

Lagrange type additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
1

(nr)2
ϕ̃(x, · · · , x︸ ︷︷ ︸

n times

) (3.6)

for all x ∈ X.

Proof. The proof is similar to the proofs of Theorems 2.4 and 3.2. �
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Corollary 3.5. Let ǫ ≥ 0 and let p be a real number with 0 < p < 1 if nr < 1 and

with p > 1 if nr > 1. Let f : X → Y be an odd mapping such that

‖Duf(x1, · · · , xn)‖ ≤ ǫ
n∑

j=1

||xj ||
p

for all u ∈ U(A) and all x1, · · · , xn ∈ X. Then there exists a unique A-linear

generalized Euler–Lagrange type additive mapping L : X → Y such that

‖f(x) − L(x)‖ ≤
nǫ

(nr)p+1 − (nr)2
||x||p

for all x ∈ X.

Proof. Define ϕ(x1, · · · , xn) = ǫ
∑n

j=1 ||xj ||
p, and apply Theorem 3.2. �

4 Isomorphisms between unital C∗-algebras

Throughout this section, assume that r1 = · · · = rn = r ∈ Q ∩ (0,∞). Assume

that A is a unital C∗-algebra with norm || · || and unit e, and that B is a unital

C∗-algebra with norm ‖ · ‖. Let U(A) be the set of unitary elements in A.

We investigate C∗-algebra isomorphisms between unital C∗-algebras.

Theorem 4.1. Let h : A → B be an odd bijective mapping satisfying h((nr)duy) =

h((nr)du)h(y) for all u ∈ U(A), all y ∈ A, and all d ∈ Z, for which there exists a

function ϕ : An → [0,∞) such that

∞∑

j=0

1

(nr)j
ϕ((nr)jx1, · · · , (nr)jxn) < ∞, (4.1)

‖Dµh(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn),

‖h((nr)du∗) − h((nr)du)∗‖ ≤ ϕ((nr)du, · · · , (nr)du
︸ ︷︷ ︸

n times

) (4.2)

for all µ ∈ S1 := {λ ∈ C | |λ| = 1}, all u ∈ U(A), all d ∈ Z and all x1, · · · , xn ∈ A.

Assume that

(4.i) lim
d→∞

1

(nr)d
h((nr)de) is invertible.

Then the odd bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Consider the C∗-algebras A and B as left Banach modules over the unital

C∗-algebra C. By Theorem 3.2, there exists a unique C-linear generalized Euler–

Lagrange type additive mapping H : A → B such that

‖h(x) − H(x)‖ ≤
1

(nr)2
ϕ̃(x, · · · , x︸ ︷︷ ︸

n times

) (4.3)
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for all x ∈ A. The generalized Euler–Lagrange type additive mapping H : A → B

is given by

H(x) = lim
d→∞

1

(nr)d
h((nr)dx)

for all x ∈ A.

By (4.1) and (4.2), we get

H(u∗) = lim
d→∞

1

(nr)d
h((nr)du∗) = lim

d→∞

1

(nr)d
h((nr)du)∗

= ( lim
d→∞

1

(nr)d
h((nr)du))∗ = H(u)∗

for all u ∈ U(A). Since H is C-linear and each x ∈ A is a finite linear combination

of unitary elements (see [9]), i.e., x =
∑m

j=1 λjuj (λj ∈ C, uj ∈ U(A)),

H(x∗) = H(
m∑

j=1

λju
∗

j) =
m∑

j=1

λjH(u∗

j) =
m∑

j=1

λjH(uj)
∗ = (

m∑

j=1

λjH(uj))
∗

= H(
m∑

j=1

λjuj)
∗ = H(x)∗

for all x ∈ A.

Since h((nr)duy) = h((nr)du)h(y) for all u ∈ U(A), all y ∈ A, and all d ∈ Z,

H(uy) = lim
d→∞

1

(nr)d
h((nr)duy) = lim

d→∞

1

(nr)d
h((nr)du)h(y) = H(u)h(y) (4.4)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (4.4),

(nr)dH(uy) = H((nr)duy) = H(u((nr)dy)) = H(u)h((nr)dy)

for all u ∈ U(A) and all y ∈ A. Hence

H(uy) =
1

(nr)d
H(u)h((nr)dy) = H(u)

1

(nr)d
h((nr)dy) (4.5)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (4.5) as d → ∞, we obtain

H(uy) = H(u)H(y) (4.6)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a finite linear

combination of unitary elements, i.e., x =
∑m

j=1 λjuj (λj ∈ C, uj ∈ U(A)), it follows

from (4.6) that

H(xy) = H(
m∑

j=1

λjujy) =
m∑

j=1

λjH(ujy) =
m∑

j=1

λjH(uj)H(y) = H(
m∑

j=1

λjuj)H(y)

= H(x)H(y)
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for all x, y ∈ A.

By (4.4) and (4.6),

H(e)H(y) = H(ey) = H(e)h(y)

for all y ∈ A. Since limd→∞

1
(nr)d h((nr)de) = H(e) is invertible,

H(y) = h(y)

for all y ∈ A.

Therefore, the odd bijective mapping h : A → B is a C∗-algebra isomorphism. �

Corollary 4.2. Let ǫ ≥ 0 and let p be a real number with 0 < p < 1 if nr > 1

and with p > 1 if nr < 1. Let h : A → B be an odd bijective mapping satisfying

h((nr)duy) = h((nr)du)h(y) for all u ∈ U(A), all y ∈ A, and all d ∈ Z, such that

‖Dµh(x1, · · · , xn)‖ ≤ ǫ
n∑

j=1

||xj||
p,

‖h((nr)du∗) − h((nr)du)∗‖ ≤ n (nr)dpǫ

for all µ ∈ S1, all u ∈ U(A), all d ∈ Z, and all x1, · · · , xn ∈ A. Assume that

limd→∞

1
(nr)d h((nr)de) is invertible. Then the odd bijective mapping h : A → B is a

C∗-algebra isomorphism.

Proof. Define ϕ(x1, · · · , xn) = ǫ
∑n

j=1 ||xj ||
p, and apply Theorem 4.1. �

Theorem 4.3. Let h : A → B be an odd bijective mapping satisfying h((nr)duy) =

h((nr)du)h(y) for all u ∈ U(A), all y ∈ A, and all d ∈ Z, for which there exists a

function ϕ : An → [0,∞) satisfying (4.1), (4.2), and (4.i) such that

‖Dµh(x1, · · · , xn)‖ ≤ ϕ(x1, · · · , xn) (4.7)

for µ = 1, i, and all x1, · · · , xn ∈ A. If h(tx) is continuous in t ∈ R for each fixed

x ∈ A, then the odd bijective mapping h : A → B is a C∗-algebra isomorphism.

Proof. Put µ = 1 in (4.7). By the same reasoning as in the proof of Theorem 2.2,

there exists a unique generalized Euler–Lagrange type additive mapping H : A → B

satisfying (4.3). By the same reasoning as in the proof of [24], the generalized Euler–

Lagrange type additive mapping H : A → B is R-linear.

Put µ = i in (4.7). By the same method as in the proof of Theorem 3.2, one can

obtain that

H(ix) = lim
d→∞

1

(nr)d
h((nr)dix) = lim

d→∞

i

(nr)d
h((nr)dx) = iH(x)
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for all x ∈ A.

For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x) = (s + it)H(x)

= λH(x)

for all λ ∈ C and all x ∈ A. So

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the generalized Euler–Lagrange type

additive mapping H : A → B is C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1. �

References

[1] S. Czerwik, The stability of the quadratic functional equation, in ‘Stability

of Mappings of Hyers–Ulam Type’ (edited by Th. M. Rassias and J. Tabor),

Hadronic Press, Florida, 1994, pp. 81–91.
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