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Abstract

The norm of a bounded self-adjoint operator T : l
2 → l

2 is considered. As

applications, a new bilinear inequality with a best constant factor and some

Hilbert’s type inequalities are built.

Let H be a real separable Hilbert space and T : H → H be a bounded self-adjoint
semi-positive definite operator. Then (see [1],(17))

|(a, T b)| ≤ ||T ||√
2

(||a||2||b||2 + (a, b)2)
1
2 (a, b ∈ H), (1)

where (a, b) is the inner product of a and b, and ||a|| =
√

(a, a) is the norm of a.

Note 1. By Cauchy-Schwarz’s inequality (see [2]), (1) can imply to

|(a, T b)| ≤ ||T ||||a||||b|| (a, b ∈ H). (2)

It is obvious that the constant factor ||T || in (2) is the best possible and then the
constant factor ||T ||/2 in (1) is still the best possible since (1) is an improvement of
(2).

In this paper, the norm of a bounded self-adjoint operator T : l2 → l2 is con-
sidered. As applications, a new bilinear inequality with a best constant factor and
some new Hilbert’s type inequalities are built by using (1), (2) and the given norm.
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For this, we consider some firsthand corollaries of (1) as follows:
(a) Since we have (see [3])

∞∑

n=1

nλ−1

[
∞∑

m=1

am

(m + n)λ

]2

≤
[
B(

λ

2
,
λ

2
)

]2 ∞∑

n=1

n1−λa2
n, (3)

where the constant factor
[
B(λ

2
, λ

2
)
]2

(0 < λ ≤ 4) is the best possible and B(u, v)

is the Beta function. Replacing n
1−λ

2 an by an in (3), we have an equivalent form of
(3) as

∞∑

n=1

[
∞∑

m=1

(mn)(λ−1)/2

(m + n)λ
am

]2

≤
[
B(

λ

2
,
λ

2
)

]2 ∞∑

n=1

a2
n. (4)

If we set a self-adjoint semi-positive definite operator T : l2 → l2 as:

Ta := b =

{
∞∑

m=1

(mn)(λ−1)/2

(m + n)λ
am

}∞

n=1

, a = {am}∞m=1 ∈ l2,

then Inequality (4) is equivalent to ||Ta|| ≤ B(λ
2
, λ

2
)||a||. Since the constant factor

B(λ
2
, λ

2
) (0 < λ ≤ 4) in (4) is the best possible, we can conclude that T is a bounded

operator and ||T || = B(λ
2
, λ

2
). Hence, if T is shown being of semi-positive definite,

then by (1) and Note 1, one has: If {am}∞m=1 ,{bn}∞n=1 ∈ l2, then for 0 < λ ≤ 4,

∞∑

n=1

∞∑

m=1

(mn)
λ−1

2 ambn

(m + n)λ
≤ 1√

2
B(

λ

2
,
λ

2
)

{
∞∑

n=1

a2
n

∞∑

n=1

b2
n +

∞∑

n=1

anbn

} 1
2

, (5)

where the constant factor 1√
2
B(λ

2
, λ

2
) is the best possible.

(b) Since we have (see [4])

∞∑

n=1

nλ−1

[
∞∑

m=1

am

mλ + nλ

]2

≤ (
π

λ
)2

∞∑

n=1

n1−λa2
n, (6)

where the constant factor (π
λ
)2 (0 < λ ≤ 2) is the best possible. By the same way

of (a), we have:
If {am}∞m=1 ,{bn}∞n=1 ∈ l2, then for 0 < λ ≤ 2,

∞∑

n=1

∞∑

m=1

(mn)
λ−1

2 ambn

mλ + nλ
≤ π

λ
√

2

{
∞∑

n=1

a2
n

∞∑

n=1

b2
n +

∞∑

n=1

anbn

} 1
2

, (7)

where the constant factor π
λ
√

2
is the best possible.

(c) Since we have (see [5])

∞∑

n=0

(n +
1

2
)λ−1

[
∞∑

m=0

am

(m + n + 1)λ

]2

≤
[
B(

λ

2
,
λ

2
)

]2 ∞∑

n=0

(n +
1

2
)1−λa2

n, (8)

where the constant factor
[
B(λ

2
, λ

2
)
]2

(0 < λ ≤ 2) is the best possible. By the same
way, we have:
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If {am}∞m=0 ,{bn}∞n=0 ∈ l2, then for 0 < λ ≤ 2,

∞∑

n=0

∞∑

m=0

[(m + 1
2
)(n + 1

2
)]

λ−1
2

(m + n + 1)λ
ambn ≤ 1√

2
B(

λ

2
,
λ

2
)

{
∞∑

n=0

a2
n

∞∑

n=0

b2
n +

∞∑

n=0

anbn

} 1
2

, (9)

where the constant factor 1√
2
B(λ

2
, λ

2
) is the best possible. In particular, for λ = 1,

we have the following improved Hilbert’s inequality (see [1])

∞∑

n=0

∞∑

m=0

ambn

m + n + 1
≤ π√

2

{
∞∑

n=0

a2
n

∞∑

n=0

b2
n +

∞∑

n=0

anbn

} 1
2

. (10)

(d) Since we have (see [7])

∞∑

n=1

nλ−1

[
∞∑

m=1

am

max{mλ, nλ}

]2

≤ (
4

λ
)2

∞∑

n=1

n1−λa2
n, (11)

where the constant factor ( 4
λ
)2 (0 < λ ≤ 2) is the best possible. By the same way,

we have:
If {am}∞m=1 ,{bn}∞n=1 ∈ l2, then for 0 < λ ≤ 2,

∞∑

n=1

∞∑

m=1

(mn)
λ−1

2 ambn

max{mλ, nλ} ≤ 4

λ
√

2

{
∞∑

n=1

a2
n

∞∑

n=1

b2
n +

∞∑

n=1

anbn

} 1
2

, (12)

where the constant factor 4
λ
√

2
is the best possible. In particular, for λ = 1, we have

the following improved Hilbert’s type inequality (see [6]) :

∞∑

n=1

∞∑

m=1

ambn

max{m, n} ≤ 4√
2

{
∞∑

n=1

a2
n

∞∑

n=1

b2
n +

∞∑

n=1

anbn

} 1
2

. (13)

Theorem 1. Let k(x, y) be continuous in (0,∞) × (0,∞), satisfying:
(i) k(x, y) = k(y, x) (> 0), for x, y ∈ (0,∞);

(ii) for x > 0 and ε ≥ 0, k(x, y)(x
y
)

1+ε
2 is decreasing in y ∈ (0,∞);

(iii) for x > 0 and ε ∈ [0, ε0) (ε0 is small enough), the integral
∫∞
0 k(x, y)(x

y
)

1+ε
2 dy

is a constant only dependent on ε, but independent on x, such that

k(ε) :=
∫ ∞

0
k(x, y)(

x

y
)

1+ε
2 dy = k(0) + o(1) (ε → 0+); (14)

∞∑

m=1

m−(1+ε)
∫ 1

0
k(m, y)(

m

y
)

1+ε
2 dy = O(1) (ε → 0+). (15)

If l2 is a real space, define the operator T : l2 → l2 with the kernel k(m, n) as: for
n ∈ N,

Ta := b =

{
∞∑

m=1

k(m, n)am

}∞

n=1

, a = {am}∞m=1 ∈ l2.

Then T is a bounded self-adjoint operator and
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||T || = k := k(0) =
∫ ∞

0
k(x, y)(

x

y
)

1
2 dy < ∞. (16)

Proof. By Cauchy’s inequality with weight (see[8]), we have from (i), (ii) and
(14) that

(
∞∑

m=1

k(m, n)am

)2

=

{
∞∑

m=1

k(m, n)[(
n

m
)

1
4 ][(

m

n
)

1
4 am]

}2

≤ [
∞∑

m=1

k(n, m)[(
n

m
)

1
2 ][

∞∑

m=1

k(m, n)(
m

n
)

1
2 a2

m]

≤ [
∫ ∞

0
k(n, x)[(

n

x
)

1
2 dx][

∞∑

m=1

k(m, n)(
m

n
)

1
2 a2

m]

= k
∞∑

m=1

k(m, n)(
m

n
)

1
2 a2

m;

||Ta||2 = (Ta, Ta) =
∞∑

n=1

(
∞∑

m=1

k(m, n)am

)2

≤ k
∞∑

n=1

[
∞∑

m=1

k(m, n)(
m

n
)

1
2 a2

m] = k
∞∑

m=1

[
∞∑

n=1

k(m, n)(
m

n
)

1
2 ]a2

m

≤ k
∞∑

m=1

[
∫ ∞

0
k(m, y)(

m

y
)

1
2 dy]a2

m = k2||a||2, (17)

and then ||Ta|| ≤ k||a||. It follows that Ta ∈ l2 and ||T || ≤ k.

For 0 < ε < ε0, setting ã as: ã ={m− 1+ε
2 }∞m=1 ∈ l2, then by (ii) and (iii), we have

(T ã, ã) =
∞∑

m=1

∞∑

n=1

k(m, n) (
1

mn
)

1+ε
2

=
∞∑

m=1

m−(1+ε)
∞∑

n=1

k(m, n)(
m

n
)

1+ε
2 ≥

∞∑

m=1

m−(1+ε)
∫ ∞

1
k(m, y)(

m

y
)

1+ε
2 dy

=
∞∑

m=1

m−(1+ε) [
∫ ∞

0
k(m, y)(

m

y
)

1+ε
2 dy −

∫ 1

0
k(m, y)(

m

y
)

1+ε
2 dy]

=
∞∑

m=1

m−(1+ε) k(ε) −
∞∑

m=1

m−(1+ε)
∫ 1

0
k(m, y)(

m

y
)

1+ε
2 dy

=
∞∑

m=1

m−(1+ε) k(ε) − O(1) = ||ã||2(k + o(1)) (ε → 0+),

and then
||T ||||ã||2 ≥ ||T ã||||ã|| ≥ (T ã, ã) ≥ ||ã||2(k + o(1)) .

Hence ||T || ≥ k (ε → 0+), and ||T || = k. Since

(Ta, b) =
∞∑

n=1

∞∑

m=1

k(m, n)ambn =
∞∑

m=1

am

∞∑

n=1

k(m, n) bn = (a, T b).
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It follows that T = T ∗ and T is a bounded self-adjoint operator. The theorem is
proved.

By using (2) and Theorem 1, we have
Theorem 2. If l2 is a real inner-product space, a = {am}∞m=1, b = {bn}∞n=1 ∈ l2,

and k(x, y) is defined by Theorem 1, then
∞∑

n=1

∞∑

m=1

k(m, n)ambn ≤ k||a||||b||, (18)

where the constant factor k is the best possible and k = k(0) =
∫∞
0 k(x, y)(x

y
)

1
2 dy.

Note 2. If k = k(0) =
∫∞
0 k(x, y)(x

y
)

1
2 dy is a constant but the integral

∫∞
0 k(x, y)(x

y
)

1+ε
2 dy (0 < ε < ε0) is dependent on x and ε, then (17) is still valid, and

we have ||T || ≤ k. In this case, by (2), we still have (18), but we can’t affirm that
the constant factor k in (18) is still the best possible.

In the following, we need the formula of the Beta function B(u,v) as (cf. Wang
et al. [9]):

B(u, v) =
∫ ∞

0

1

(1 + t)u+v
tu−1dt = B(v, u) (u, v > 0). (19)

Lemma 1. If λ > 0, define the function f(u) := lnu
uλ−1

, u ∈ (0,∞) (f(1) := 1
λ

=
limu→1 f(u)), then f(u) is decreasing in (0,∞).

Proof. Setting g(u) = uλ − 1 − λuλ ln u, then f ′(u) = g(u)
(uλ−1)2u

. Since g′(u) =

−λ2uλ−1 ln u, we have g′(u) > 0, u ∈ (0, 1); g′(u) < 0, u ∈ (1,∞), and then g(1) =
0 = maxu>0{g(u)} ≥ g(u) (u > 0). Hence f ′(u) ≤ 0 and f(u) is decreasing in (0,∞).
The lemma is proved.

(e) Setting k(x, y) = ln(x/y)
xλ−yλ (xy)

λ−1
2 (0 < λ ≤ 2), then by Lemma 1, for fixed

x > 0, xλf( y
x
) = ln(x/y)

xλ−yλ is decreasing in y ∈ (0,∞), and for x > 0, ε ≥ 0 and
0 < λ ≤ 2,

k(x, y)(
x

y
)

1+ε
2 =

ln(x/y)

xλ − yλ
(
1

y
)

2−λ+ε
2 x

λ+ε
2

is decreasing in y ∈ (0,∞). For 0 < ε < λ/2, we obtain that

k(ε) =
∫ ∞

0

ln(x/y)

xλ − yλ
(xy)

λ−1
2 (

x

y
)

1+ε
2 dy =

1

λ2

∫ ∞

0

ln u

u − 1
u

ε−λ
2λ du

→ 1

λ2

∫ ∞

0

ln u

u − 1
u− 1

2 du = (
π

λ
)2 = k (ε → 0+).

Since ln(m/y)
mλ−yλ is decreasing in y ∈ (0,∞), then for 0 < ε < λ/2 (0 < λ ≤ 2), we have

0 < A(m, ε) :=
∞∑

m=1

m−(1+ε)
∫ 1

0

ln(m/y)

mλ − yλ
(my)

λ−1
2 (

m

y
)

1+ε
2 dy

≤
∞∑

m=1

m−1
∫ 1

0

ln m

mλ − 1
(my)

λ−1
2 (

m

y
)

1+ε
2 dy

=
2

λ − ε

∞∑

m=1

ln m

mλ − 1
m

λ+ε
2

−1 ≤ 4

λ

∞∑

m=1

ln m

(mλ − 1)m1− 3λ
4

< ∞,
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and then A(m, ε) = O(1). Hence k(x, y) possesses the conditions of (i),(ii) and (iii).
If l2 is a real space, define the operator T : l2 → l2 with the kernel k(m, n) =

ln(m/n)
mλ−nλ (mn)

λ−1
2 (0 < λ ≤ 2) as: for n ∈ N,

Ta := b =

{
∞∑

m=1

ln(m/n)

mλ − nλ
(mn)

λ−1
2 am

}∞

n=1

, a = {am}∞m=1 ∈ l2.

Then by Theorem 1, T is a bounded self-adjoint operator and

||T || = k := k(0) =
∫ ∞

0
k(x, y)(

x

y
)

1
2 dy = (

π

λ
)2.

By Theorem 2, we have

Corollary 1. If l2 is a real space, a = {am}∞m=1, b = {bn}∞n=1 ∈ l2, then for
0 < λ ≤ 2,

∞∑

n=1

∞∑

m=1

(mn)
λ−1

2 ln(m
n
)

mλ − nλ
ambn ≤ (

π

λ
)2||a||||b||, (20)

where the constant factor (π
λ
)2 is the best possible. In particular, for λ = 1, we have

the following Hilbert’s type inequality (see [6]) :

∞∑

n=1

∞∑

m=1

ln(m
n
)

m − n
ambn ≤ π2||a||||b||, (21)

(f) Setting k(x, y) = (xy)(λ−1)/2

(1+xy)λ (0 < λ ≤ 2), then for x > 0, ε ≥ 0,

k(x, y)(
x

y
)

1+ε
2 =

1

(1 + xy)λ
(
1

y
)

2−λ+ε
2 x

λ+ε
2

is decreasing in y ∈ (0,∞). For 0 < ε < λ, setting u = xy, we obtain from (19) that

kx(ε) : =
∫ ∞

0

(xy)
λ−1

2

(1 + xy)λ
(
x

y
)

1+ε
2 dy = xε

∫ ∞

0

1

(1 + u)λ
u

λ−ε
2

−1du

= xεB(
λ − ε

2
,
λ + ε

2
) → B(

λ

2
,
λ

2
) = k (ε → 0+).

If l2 is a real space, define the operator T : l2 → l2 with the kernel k(m, n) =
(mn)(λ−1)/2

(1+mn)λ (0 < λ ≤ 2) as: for n ∈ N,

Ta := b =






∞∑

m=1

(mn)
λ−1

2

(1 + mn)λ
am






∞

n=1

, a = {am}∞m=1 ∈ l2.

Then T is a self-adjoint operator and by Note 2, ||T || ≤ B(λ
2
, λ

2
). Hence by (18), we

have

Corollary 2. If l2 is a real space, a = {am}∞m=1, b = {bn}∞n=1 ∈ l2, then for
0 < λ ≤ 2,

∞∑

n=1

∞∑

m=1

(mn)(λ−1)/2

(1 + mn)λ
ambn ≤ B(

λ

2
,
λ

2
)||a||||b||. (22)
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(g) Setting k(x, y) = (xy)(λ−1)/2

1+(xy)λ (0 < λ ≤ 2), then for x > 0, ε ≥ 0,

k(x, y)(
x

y
)

1+ε
2 =

1

1 + (xy)λ
(
1

y
)

2−λ+ε
2 x

λ+ε
2

is decreasing in y ∈ (0,∞). For 0 < ε < λ, setting u = (xy)λ, we obtain from (19)
that

kx(ε) : =
∫ ∞

0

(xy)
λ−1

2

1 + (xy)λ
(
x

y
)

1+ε
2 dy = xε 1

λ

∫ ∞

0

1

1 + u
u

λ−ε
2λ

−1du

= xε 1

λ
B(

λ − ε

2λ
,
λ + ε

2λ
) → π

λ
= k (ε → 0+).

If l2 is a real space, define the operator T : l2 → l2 with the kernel k(m, n) =
(mn)(λ−1)/2

1+(mn)λ (0 < λ ≤ 2) as: for n ∈ N,

Ta := b =

{
∞∑

m=1

(mn)(λ−1)/2

1 + (mn)λ
am

}∞

n=1

, a = {am}∞m=1 ∈ l2.

Then T is self-adjoint operator and by Note 2, ||T || ≤ π
λ
. By (18), we have

Corollary 3. If l2 is a real space, a = {am}∞m=1, b = {bn}∞n=1 ∈ l2, then for
0 < λ ≤ 2,

∞∑

n=1

∞∑

m=1

(mn)(mn)(λ−1)/2

1 + (mn)λ
ambn ≤ π

λ
||a||||b||. (23)

Remarks. (i) For λ = 1, both (5) and (7) reduce to the following improved
Hilbert’s inequality:

∞∑

n=1

∞∑

m=1

ambn

m + n
≤ π√

2

{
∞∑

n=1

a2
n

∞∑

n=1

b2
n +

∞∑

n=1

anbn

} 1
2

. (24)

(ii) For λ = 1, both (22) and (23) reduce to the following new Hilbert’s type
inequality:

∞∑

n=1

∞∑

m=1

ambn

1 + mn
≤ π||a||||b||. (25)

(iii) By using Theorem 2 and Note 2, we can build some new Hilbert’s type
inequalities such as (20), (22) and (23).
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