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Abstract

In this paper, we study the regularity of solutions for a fourth order
parabolic equation. Based on the Schauder type estimates and Campanato
spaces, we prove the global existence of classical solutions.

1 Introduction

This paper concerns the study of a fourth order parabolic equation

∂u

∂t
+ div[m(u)k∇∆u− |∇u|p−2∇u] = 0, x ∈ Ω,

where Ω is a bounded domain in RN and k is the positive coefficients. On the
basis of physical consideration, the equation is supplemented by the zero mass flux
boundary condition, the natural boundary condition

∂u

∂n

∣∣∣
∂Ω

=
∂∆u

∂n

∣∣∣
∂Ω

= 0,

and initial value condition

u(x, 0) = u0(x), x ∈ Ω.
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The equation arises in epitaxial growth of nanoscale thin films [1, 2, 3], where
u(x, t) denotes the height from the surface of the film in epitaxial growth. The
term div(m(u)∇∆u) denotes the capillarity-driven surface diffusion and the term
div(|∇u|p−2∇u) denotes the upward hopping of atoms. If the nonlinear relation
|∇u|p−2∇u is replaced by a term of the form f(u)∇u, we obtain the well known
Cahn-Hilliard equation[4, 6, 8, 9].

B. B. King, O. Stein and M. Winkler[3] studied the following equation

∂u

∂t
+ ∆2u− div(f(∇u)) = g(x, t),

where reasonable choice of f(z) is f(z) = |z|p−2z − z. They proved the existence,
uniqueness and regularity of solutions in an appropriate function space for initial-
boundary value problem.

In this paper, we study the problem for one-dimensional case. i.e.

∂u

∂t
+ D[m(u)kD3u− |Du|p−2Du] = 0, (x, t) ∈ Qt, p > 2, (1.1)

with boundary condition

Du
∣∣∣
x=0,1

= D3u
∣∣∣
x=0,1

= 0, (1.2)

and initial condition
u(x, 0) = u0(x), x ∈ (0, 1). (1.3)

where Qt = (0, 1)× (0, t), D =
∂

∂x
.

Our main purpose is to establish the global existence of classical solutions under
much general assumptions. The main difficulties for treating the problem (1.1)–
(1.3) are caused by the nonlinearity of the principal part and the lack of maximum
principle. Due to the nonlinearity of the principal part, there are more difficulties in
establishing the global existence of classical solutions. Our method for investigating
the regularity of solutions is based on uniform Schauder type estimates for local in
time solutions, which are relatively less used for such kind of parabolic equations of
fourth order. Our approach lies in the combination of the energy techniques with
some methods based on the framework of Campanato spaces.

Now, we state the main results in this paper.

Theorem 1.1. Assume that

(H1) m(s) ∈ C2+α(R), 0 < m(s),

(H2) u0 ∈ C4+α, Diu0(0) = Diu0(1) = 0 (i = 1, 3),

where C1, C2, q are positive constants. Then the problem (1.1)-(1.3) admits a unique
classical solution u ∈ C4+α,1+α/4(Q̄T ).

This paper is organized as follows. We first present a key step for the priori
estimates on the Hölder norm of solutions in Section 2, and then give the proof of
our main theorem subsequently in Section 3.
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2 Hölder Estimates

As an important step, in this section, we give the Hölder norm estimate on the local
in time solutions. From the classical approach, it is not difficult to conclude that
the problem admits a unique classical solution local in time. So, it is sufficient to
make a priori estimates.

Proposition 2.1. Assume that (H1)–(H2) holds, and u is a smooth solution of the
problem. Then there exists a constant C depending only on the known quantities,
such that for any (x1, t1), (x2, t2) ∈ QT and some 0 < α < 1,

|u(x1, t1)− u(x2, t2)| ≤ C(|t1 − t2|α/4 + |x1 − x2|α).

Proof. Multiplying both sides of the equation by D2u and then integrating resulting
relation with respect to x over (0, 1), we have

1

2

d

dt

∫ 1

0
(Du)2dx + k

∫ 1

0
m(u)(D3u)2dx

=−
∫ 1

0
D[|Du|p−2Du]D2udx,

that is

1

2

d

dt

∫ 1

0
(Du)2dx + k

∫ 1

0
m(u)(D3u)2dx = −(p− 1)

∫ 1

0
|Du|p−2(D2u)2dx,

hence
1

2

d

dt

∫ 1

0
(Du)2dx + k

∫ 1

0
m(u)(D3u)2dx ≤ 0

we obtain

sup
0<t<T

∫ 1

0
(Du)2dx ≤ C. (2.1)

∫ ∫
QT

m(u)(D3u)2dx ≤ C. (2.2)

The integration of (1.1) over the interval (0, 1) yields
∫ 1

0

∂u

∂t
dx = 0, hence we obtain

∫ 1

0
u(x, t)dx =

∫ 1

0
u0(x)dx.

Applying the mean value theorem, we see that for some x∗
t ∈ (0, 1)

u(x∗
t , t) =

∫ 1

0
u0(x)dx = M.

Therefore
|u(x, t)| ≤ |u(x, t)− u(x∗

t , t)|+ |u(x∗
t , t)|

≤
∣∣∣∣ ∫ x

x∗t

Du(t, y)dy

∣∣∣∣+ M.
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Taking this into account and using (2.2), it follows that

sup
QT

|u(x, t)| ≤ C. (2.3)

By (2.1), we have

|u(x1, t)− u(x2, t)| ≤ C|x1 − x2|α, 0 < α < 1. (2.4)

Integrating the equation (1.1) with respect to x over (y, y +(∆t)1/4)× (t1, t2), where
0 < t1 < t2 < T , ∆t = t2 − t1, we see that

∫ y+(∆t)1/4

y
[u(z, t2)− u(z, t1)]dz

=−
∫ t2

t1
[(m(u(y′, s))kD3u(y′, s)− |Du|p−2Du(u(y′, s)))

− (m(u(y, s))kD3u(y, s)− |Du|p−2Du(y, s))]ds.

(2.5)

Set

N(s, y) =(m(u(y′, s))kD3u(y′, s)− |Du|p−2Du(y′, s))

− (m(u(y, s))kD3u(y, s)− |Du|p−2Du(y, s)),

where y′ = y + (∆t)1/4.

Then (2.5) is converted into

(∆t)1/4
∫ 1

0
[u(y + θ(∆t)1/4, t2)− u(y + θ(∆t)1/4, t1))]dθ

=−
∫ t2

t1
N(s, y)ds.

Integrating the above equality with respect to y over (x, x + (∆t)1/4), we get

(∆t)1/2(u(x∗, t2)− u(x∗, t1)) = −
∫ t2

t1

∫ x+(∆t)1/4

x
N(s, y)dyds.

Here, we have used the mean value theorem, where x∗ = y∗ + θ∗(∆t)1/4, y∗ ∈
(x, x + (∆t)1/4), θ ∈ (0, 1). Hence by Hölder inequality and (2.2),(2.3),(2.4), we get

∣∣∣∣u(x∗, t2)− u(x∗, t1)
∣∣∣∣ ≤ C(∆t)α/4, 0 < α < 1. (2.6)

The proof is complete. �
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3 Proof of the result

In this section, we prove the theorem that there exists a classical solution of the
problem (1.1)–(1.3), under our assumptions on m and u0.

Now, we consider the following linear problem

∂u

∂t
+ D2(a(x, t)D2u) = D2f, (3.1)

u
∣∣∣
x=0,1

= D2u
∣∣∣
x=0,1

= 0, (3.2)

u(x, 0) = 0 (3.3)

Here we do not restrict the smoothness of the given functions a(x, t) and f(x, t),
but simply assume that they are sufficiently smooth. Our main purpose is to find
the relation between the Hölder norm of the solution u and a(x, t), f(x, t).

The crucial step is to establish the estimates on the Hölder norm of u. Let
(t0, x0) ∈ (0, T )× (0, 1) be fixed and define

ϕ(ρ) =
∫ ∫

Sρ

(
|u− uρ|2 + ρ4|D2u|2

)
dtdx, (ρ > 0)

where

Sρ = (t0 − ρ4, t0 + ρ4)×Bρ(x0), uρ =
1

|Sρ|

∫ ∫
Sρ

u dtdx

and Bρ(x0) = (x0 − ρ, x0 + ρ).
Let u be the solution of the problem (3.1),(3.2),(3.3). We split u on SR into

u = u1 + u2, where u1 is the solution of the problem

∂u1

∂t
+ a(t0, x0)D

4u1 = 0, (t, x) ∈ SR (3.4)

u1 = u, D2u1 = D2u, (t, x) ∈ (t0 −R4, t0 + R4)× ∂BR(x0) (3.5)

u1 = u, t = t0 −R4, x ∈ BR(x0), (3.6)

and u2 solves the problem

∂u2

∂t
+ a(t0, x0)D

4u2 = D2
[
(a(t0, x0)− a(t, x))D2u

]
+ D2f, (t, x) ∈ SR, (3.7)

u2 = 0, D2u2 = 0, (t, x) ∈ (t0 −R4, t0 + R4)× ∂BR(x0), (3.8)

u2 = 0, t = t0 −R4, x ∈ BR(x0). (3.9)

By classical linear theory, the above decomposition is uniquely determined by u.
We need several lemmas on u1 and u2.

Lemma 3.1. Assume that

|a(t, x)−a(t0, x0)| ≤ aσ

(
|t− t0|σ/4 + |x−x0|σ

)
, t ∈ (t0−R4, t0 +R4), x ∈ BR(x0).
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Then

sup
(t0−R4,t0+R4)

∫
BR(x0)

u2
2(t, x) dx +

∫ ∫
SR

(D2u2)
2 dtdx

≤CR2σ
∫ ∫

SR

(D2u)2 dtdx + C sup
SR

|f |2R5.

Proof. Multiply the equation (3.7) by u2 and integrate the resulting relation over
(t0 −R4, t)×BR(x0). Integrating by parts, we have

1

2

∫
BR

u2
2(x, t)dx + a(x0, t0)

∫ t

t0−R4
ds
∫

BR

(D2u2)
2dx

=
∫ t

t0−R4
ds
∫

BR

[a(t0, x0)− a(t, x)]D2uD2u2dx +
∫ t

t0−R4
ds
∫

BR

fD2u2dx.

Noticing that ∣∣∣∣∫ t

t0−R4
ds
∫

BR

[a(t0, x0)− a(t, x)]D2uD2u2dx
∣∣∣∣

≤ε
∫ ∫

SR

(D2u2)
2dsdx + Cεa

2
σR

2σ
∫ ∫

SR

(D2u)2dsdx,

and ∣∣∣∣∫ t

t0−R4
ds
∫

BR

fD2u2dx
∣∣∣∣ ≤ ε

∫ ∫
SR

(D2u2)
2dsdx + CεR

5 sup |f |2,

hence we obtain the estimate and the proof is complete. �

Lemma 3.2. For any (t1, x1), (t2, x2) ∈ Sρ,

|u1(t1, x1)− u1(t2, x2)|2

|t1 − t2|1/4 + |x1 − x2|

≤C sup
(t0−ρ4,t0+ρ4)

∫
Bρ(x0)

(Du1(t, x))2 dx + C
∫ ∫

Sρ

(D3u1)
2 dtdx.

Proof. From the Sobolev embedding theorem, we have for any (x1, t), (x2, t) ∈ Sρ,

|u1(t, x1)− u1(t, x2)|2

|x1 − x2|
≤ C sup

(t0−ρ4,t0+ρ4)

∫
Bρ(x0)

(Du1(t, x))2 dx. (3.10)

Integrating the equation (3.4) with respect to x over (y, y +(∆t)1/4)× (t1, t2), where
0 < t1 < t2 < T , ∆t = t2 − t1, we see that

∫ y+(∆t)1/4

y
[u1(z, t2)− u1(z, t1)]dz + a(x0, t0)

∫ t2

t1
[D3u1(y

′, s)−D3u1(y, s)]ds = 0,

where y′ = y + (∆t)1/4.
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That is

(∆t)1/4
∫ 1

0
u1(y + θ(∆t)1/4, t2)− u1(y + θ(∆t)1/4, t1))dθ

+ a(x0, t0)
∫ t2

t1
[D3u1(y + (∆t)1/4, s)−D3u1(y, s)]ds = 0.

Integrating the above equality with respect to y over (x, x + (∆t)1/4), we get

(∆t)1/2(u1(x
∗, t2)− u1(x

∗, t1))

=a(x0, t0)
∫ t2

t1

∫ x+(∆t)1/4

x
[D3u1(y + (∆t)1/4, s)−D3u1(y, s)]ds.

Hence, ∣∣∣∣u1(x
∗, t2)− u1(x

∗, t1)| ≤ C|t1 − t2|1/4
∫ ∫

Sρ

(D3u1)
2 dtdx

where x∗ = y∗ + θ∗(∆t)1/4, y∗ ∈ (x, x + (∆t)1/4), θ ∈ (0, 1). This and (3.10) yields
the desired conclusion and the proof is complete. �

Lemma 3.3. (Caccioppoli type inequality)

sup
(t0−(R/2)4,t0+(R/2)4)

∫
BR/2(x0)

|u1(t, x)− (u1)R|2 dx +
∫ ∫

SR/2

|D2u1|2 dtdx

≤ C

R4

∫ ∫
SR

|u1(t, x)− (u1)R|2 dtdx

sup
(t0−(R/2)4,t0+(R/2)4)

∫
BR/2(x0)

|Du1|2 dx +
∫ ∫

SR/2

|D3u1|2 dtdx

≤ C

R4

∫ ∫
SR

|Du1|2 dtdx ≤ C

R6

∫ ∫
S2R

|u1(t, x)− (u1)R|2 dtdx.

Lemma 3.4. Assume that

|a(t, x)− a(t0, x0)| ≤aσ

(
|t− t0|σ/4 + |x− x0|σ

)
,

t ∈ (t0 −R4, t0 + R4), x ∈ BR(x0).

Then for any ρ ∈ (0, R),

1

ρ6

∫ ∫
Sρ

(|u1 − (u1)ρ|2 + ρ4|D2u1|2) dtdx

≤ C

R6

∫ ∫
SR

(|u1 − (u1)R|2 + R4|D3u1|2) dtdx.
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Lemma 3.5. For λ ∈ (5, 6),

ϕ(ρ) ≤ Cλ

(
ϕ(R0) + sup

SR0

|f |2
)

ρλ, ρ ≤ R0 = min

(
dist(x0, ∂Ω), t

1/4
0

)
,

where Cλ depends on λ, R0 and the known quantities.

The proof of lemma 3.3–3.5 is quite similar to the corresponding part in [5], and
we omit the details.

Similar to the discussion about the Campanato spaces in [7], we first conclude
from Lemma 3.5 that

|u(t1, x1)− u(t2, x2)|
|t1 − t2|(λ−5)/4 + |x1 − x2|(λ−5)

≤ C

(
1 + sup

SR0

|f |
)

(3.11)

Proof of Theorem 1.1. The key estimate is the Hölder estimate for Du, which can
be obtained by the above result. In face, let w = Du−Du0 satisfies

∂w

∂t
+ D2(m(u)D2w) = D2f,

w
∣∣∣
x=0,1

= D2w
∣∣∣
x=0,1

= 0,

w(x, 0) = 0,

where

f = −km(u)D3u0 + |Du|p−2Du.

Hence by (2.3), (3.11) and using the interpolation inequality, we thus obtain

|Du(x1, t1)−Du(x2, t2)| ≤ C(|x1 − x2|α/2 + |t1 − t2|α/8).

The conclusion follows immediately from the classical theory, since we can transform
the equation (1.1) into the form

∂u

∂t
+ a1(t, x)D4u + b1(t, x)D3u + a2(t, x)D2u = 0,

where the Hölder norms on

a1(t, x) = km(u(t, x)), b1(t, x) = km′(u(t, x))Du(t, x)

a2(t, x) = −(p− 1)|Du|p−2,

have been estimated in the above discussion. The proof is complete. �
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