A New Hilbert-Type Inequality

Bicheng Yang

Abstract

This paper deals with a new Hilbert- type inequality by introducing a parameter and the Beta function. As applications, the equivalent form, the reversions and some particular results are considered. All the theorems provide some new estimates on this type of inequalities.

1 Introduction

If $a_{n}, b_{n} \geq 0$, such that $0<\sum_{n=1}^{\infty} a_{n}^{2}<\infty$ and $0<\sum_{n=1}^{\infty} b_{n}^{2}<\infty$, then the famous Hilbert's inequality is given by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\pi\left\{\sum_{n=1}^{\infty} a_{n}^{2} \sum_{n=1}^{\infty} b_{n}^{2}\right\}^{1 / 2} \tag{1}
\end{equation*}
$$

where the constant factor π is the best possible (see [1]). Inequality (1) was generalized by Hardy-Riesz [2] in 1925 with (p,q)- parameter as:

If $p>1, \frac{1}{p}+\frac{1}{q}=1,0<\sum_{n=1}^{\infty} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} b_{n}^{q}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left\{\sum_{n=1}^{\infty} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} b_{n}^{q}\right\}^{\frac{1}{q}} \tag{2}
\end{equation*}
$$

where the constant factor $\pi / \sin (\pi / p)$ is the best possible. When $\mathrm{p}=\mathrm{q}=2$, (2) reduces to (1). Inequality (2) is named of Hardy-Hilbert's inequality, which is important in

[^0]analysis and its applications (see [3]). In 1997- 1998, by estimating the weight coefficient, Yang and Gao $[4,5]$ gave a strengthened version of (2) as:
\[

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{m+n}<\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}-\frac{1-\gamma}{n^{\frac{1}{p}}}\right] a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty}\left[\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}-\frac{1-\gamma}{n^{\frac{1}{q}}}\right] b_{n}^{q}\right\}^{\frac{1}{q}}, \tag{3}
\end{equation*}
$$

\]

where γ is Euler constant, and $1-\gamma=0.42278433^{+}$. In recent years, by introducing a parameter λ and the Beta function, Yang [6] gave a generalization of (2) as:

If $2-\min \{p, q\}<\lambda \leq 2,0<\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{p}<\infty$ and $0<\sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{q}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(m+n)^{\lambda}}<k_{\lambda}(p)\left\{\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{q}\right\}^{\frac{1}{q}} \tag{4}
\end{equation*}
$$

where the constant factor $k_{\lambda}(p)\left(=B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)\right)$ is the best possible $(\mathrm{B}(\mathrm{u}, \mathrm{v})$ is the Beta function). And the equivalent form was built as (see [7]):

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{(p-1)(\lambda-1)}\left[\sum_{m=1}^{\infty} \frac{a_{m}}{(m+n)^{\lambda}}\right]^{p}<\left[k_{\lambda}(p)\right]^{p} \sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{p}, \tag{5}
\end{equation*}
$$

where the constant factor $\left[k_{\lambda}(p)\right]^{p}\left(=\left[B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)\right]^{p}\right)$ is the best possible. When $\lambda=1$, inequality (4) reduces to(2), and (5) reduces to the equivalent form of (2) as:

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{m+n}\right)^{p}<\left[\frac{\pi}{\sin (\pi / p)}\right]^{p} \sum_{n=1}^{\infty} a_{n}^{p} . \tag{6}
\end{equation*}
$$

For $p=q=2$, in (4), one has $0<\lambda \leq 2$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(m+n)^{\lambda}}<B\left(\frac{\lambda}{2}, \frac{\lambda}{2}\right)\left\{\sum_{n=1}^{\infty} n^{1-\lambda} a_{n}^{2} \sum_{n=1}^{\infty} n^{1-\lambda} b_{n}^{2}\right\}^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

It is obvious that inequality (7) is and extension of (1). We call (7) the extended Hilbert's inequality. Yang [8] proved that (7) is still valid for $0<\lambda \leq 4$. In 2003, Yang et al. [9] provided and extensive account of the above results. Recently, Yang [10] gave a reversion of the integral analogue of (4) following the assumption of $0<p<1, \frac{1}{p}+\frac{1}{q}=1$ and $2-p<\lambda<2-q$.

The main objective of this paper is to build a new Hilbert-type inequality by introducing a parameter λ and the Beta function, which is related to the double series as

$$
\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{\lambda}}(\lambda>2-\min \{p, q\}) .
$$

As applications, the equivalent form, the reversions and some particular results are considered. All the theorems provide some new estimates on this type of inequalities.

2 Main results and the equivalent form

First, we need the formula of the Beta function as (cf. Wang et al. [11]):

$$
\begin{equation*}
B(u, v)=\int_{0}^{\infty} \frac{1}{(1+t)^{u+v}} t^{u-1} d t=B(v, u)(u, v>0) \tag{8}
\end{equation*}
$$

LEMMA 2.1. If $p>1, \frac{1}{p}+\frac{1}{q}=1, u(t)$ is a differentiable strict increasing function in $\left(n_{0}-1, \infty\right)\left(n_{0} \in N\right)$, such that $u\left(\left(n_{0}-1\right)+\right)=0$ and $u(\infty)=\infty$, and for $r=p, q, \lambda>2-r,(u(t))^{\frac{\lambda-2}{r}} u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing, define the weight function $\omega_{\lambda}(r, m)$ as

$$
\begin{equation*}
\omega_{\lambda}(r, m):=\sum_{n=n_{0}}^{\infty} \frac{1}{(1+u(m) u(n))^{\lambda}}\left(\frac{u(m)}{u(n)}\right)^{\frac{2-\lambda}{r}} u^{\prime}(n)\left(m \in N, m \geq n_{0}\right) . \tag{9}
\end{equation*}
$$

Then, one has

$$
\begin{equation*}
\omega_{\lambda}(r, m)<B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)(u(m))^{\frac{2(2-\lambda)}{r}-1}\left(r=p, q ; m \geq n_{0}\right) \tag{10}
\end{equation*}
$$

Proof. By the assumption of the lemma, since $\lambda>2-\min \{p, q\} \geq 0$ and $(u(t))^{\frac{\lambda-2}{r}} u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing, one has

$$
\omega_{\lambda}(r, m)<\int_{n_{0}-1}^{\infty} \frac{1}{(1+u(m) u(y))^{\lambda}}\left(\frac{u(m)}{u(y)}\right)^{\frac{2-\lambda}{r}} u^{\prime}(y) d y
$$

Setting $t=u(m) u(y)$ in the above integral, one finds

$$
\begin{aligned}
\omega_{\lambda}(r, m) & <\int_{0}^{\infty} \frac{1}{(1+t)^{\lambda}}\left(\frac{u^{2}(m)}{t}\right)^{\frac{2-\lambda}{r}} \frac{1}{u(m)} d t \\
& =\int_{0}^{\infty} \frac{1}{(1+t)^{\lambda}} t^{\frac{r+\lambda-2}{r}-1} d t(u(m))^{\frac{2(2-\lambda)}{r}-1}
\end{aligned}
$$

In view of $\frac{r+\lambda-2}{r}>0(r=p, q)$ and $\frac{p+\lambda-2}{p}+\frac{q+\lambda-2}{q}=\lambda$, then by (8), one has (10). The lemma is proved.

THEOREM 2.2. If $p>1, \frac{1}{p}+\frac{1}{q}=1, u(t)$ is a differentiable strict increasing function in $\left(n_{0}-1, \infty\right)\left(n_{0} \in N\right)$, such that $u\left(\left(n_{0}-1\right)+\right)=0$ and $u(\infty)=\infty$, and for $r=p, q, \lambda>2-r,(u(t))^{\frac{\lambda-2}{r}} u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing; $a_{n}, b_{n} \geq 0$, satisfy

$$
0<\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}<\infty \quad \text { and } 0<\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}<\infty,
$$

then one has

$$
\begin{align*}
& \sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{\lambda}} \\
< & k_{\lambda}(p)\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{q}}, \tag{11}
\end{align*}
$$

where $k_{\lambda}(p)=B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)$. In particular,
(i) setting $u(t)=t^{\alpha}(\alpha>0 ; t \in(0, \infty))$, then for $2-r<\lambda \leq 2+r\left(\frac{1}{\alpha}-1\right)$ ($r=p, q$), one has

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{\left[1+(m n)^{\alpha}\right]^{\lambda}}<\frac{k_{\lambda}(p)}{\alpha}\left\{\sum_{n=1}^{\infty} n^{\frac{2 \alpha(2-\lambda)+p}{q}-p \alpha} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{\frac{2 \alpha(2-\lambda)+q}{p}-q \alpha} b_{n}^{q}\right\}^{\frac{1}{q}} ; \tag{12}
\end{equation*}
$$

(ii) setting $u(t)=\ln t(t \in(1, \infty))$, then for $2-\min \{p, q\}<\lambda \leq 2$, one has

$$
\begin{equation*}
\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{a_{m} b_{n}}{(1+\ln m \ln n)^{\lambda}}<k_{\lambda}(p)\left\{\sum_{n=2}^{\infty} \frac{n^{p-1} a_{n}^{p}}{(\ln n)^{1-\frac{2}{q}(2-\lambda)}}\right\}^{\frac{1}{p}}\left\{\sum_{n=2}^{\infty} \frac{n^{q-1} b_{n}^{q}}{(\ln n)^{1-\frac{2}{p}(2-\lambda)}}\right\}^{\frac{1}{q}} \tag{13}
\end{equation*}
$$

Proof. By Hölder's inequality with weight (see Kuang [12]) and (9), one has

$$
\begin{align*}
& \sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{\lambda}} \\
& \sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{1}{(1+u(m) u(n))^{\lambda}}\left[\left(\frac{u(m)}{u(n)}\right)^{\frac{2-\lambda}{p q}} \frac{\left(u^{\prime}(n)\right)^{1 / p}}{\left(u^{\prime}(m)\right)^{1 / q}} a_{m}\right] \\
& \times\left[\left(\frac{u(n)}{u(m)}\right)^{\frac{2-\lambda}{p q}} \frac{\left(u^{\prime}(m)\right)^{1 / q}}{\left(u^{\prime}(n)\right)^{1 / p}} b_{n}\right] \\
\leq & \left\{\sum_{m=n_{0}}^{\infty} \sum_{n=n_{0}}^{\infty} \frac{1}{(1+u(m) u(n))^{\lambda}}\left[\left(\frac{u(m)}{u(n)}\right)^{\frac{2-\lambda}{q}} \frac{u^{\prime}(n)}{\left(u^{\prime}(m)\right)^{p-1}} a_{m}^{p}\right]\right\}^{\frac{1}{p}} \\
& \times\left\{\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{1}{(1+u(m) u(n))^{\lambda}}\left[\left(\frac{u(n)}{u(m)}\right)^{\frac{2-\lambda}{p}} \frac{u^{\prime}(m)}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right]\right\}^{\frac{1}{q}} \\
= & \left\{\sum_{m=n_{0}}^{\infty} \frac{\omega_{\lambda}(q, m)}{\left(u^{\prime}(m)\right)^{p-1}} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{\omega_{\lambda}(p, n)}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{q}} . \tag{14}
\end{align*}
$$

Hence by (10), one has (11). The theorem is proved.
THEOREM 2.3. If $p>1, \frac{1}{p}+\frac{1}{q}=1, u(t)$ is a differentiable strict increasing function in $\left(n_{0}-1, \infty\right)\left(n_{0} \in N\right)$, such that $u\left(\left(n_{0}-1\right)+\right)=0$ and $u(\infty)=\infty$, and for $r=p, q, \lambda>2-r,(u(t))^{\frac{\lambda-2}{r}} u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing; $a_{n} \geq 0$, satisfy

$$
0<\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}<\infty
$$

then, one has the equivalent form of (11) as

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{\frac{2(2-\lambda)-p}{q}}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right]^{p}<\left[k_{\lambda}(p)\right]^{p} \sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}, \tag{15}
\end{equation*}
$$

where $\left[k_{\lambda}(p)\right]^{p}=\left[B\left(\frac{p+\lambda-2}{p}, \frac{q+\lambda-2}{q}\right)\right]^{p}$. In particular,
(i) setting $u(t)=t^{\alpha}(\alpha>0 ; t \in(0, \infty))$, then for $2-r<\lambda \leq 2+r\left(\frac{1}{\alpha}-1\right)$ ($r=p, q$), one has the equivalent form of (12) as

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\alpha\left[p-\frac{2(2-\lambda)}{q}\right]-1}\left[\sum_{m=1}^{\infty} \frac{a_{m}}{\left[1+(m n)^{\alpha}\right]^{\lambda}}\right]^{p}<\left[\frac{k_{\lambda}(p)}{\alpha}\right]^{p} \sum_{n=1}^{\infty} n^{\frac{2 \alpha(2-\lambda)+p}{q}-p \alpha} a_{n}^{p} ; \tag{16}
\end{equation*}
$$

(ii) setting $u(t)=\ln t(t \in(1, \infty))$, then for $2-\min \{p, q\}<\lambda \leq 2$, one has the equivalent form of (13) as

$$
\begin{equation*}
\sum_{n=2}^{\infty} \frac{(\ln n)^{\frac{p-2(2-\lambda)}{q}}}{n}\left[\sum_{m=2}^{\infty} \frac{a_{m}}{(1+\ln m \ln n)^{\lambda}}\right]^{p}<\left[k_{\lambda}(p)\right]^{p} \sum_{n=2}^{\infty} \frac{n^{p-1}}{(\ln n)^{1-\frac{2}{q}(2-\lambda)}} a_{n}^{p} . \tag{17}
\end{equation*}
$$

Proof. Set b_{n} as

$$
b_{n}:=\frac{u^{\prime}(n)}{(u(n))^{\frac{2(2-\lambda)-p}{q}}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right]^{p-1},
$$

and use (11) to obtain

$$
\begin{gather*}
0<\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}=\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{\frac{2(2-\lambda)-p}{q}}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right]^{p} \\
=\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{\lambda}} \\
\leq k_{\lambda}(p)\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{q}} ; \tag{18}\\
\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{p}}=\left\{\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{\frac{2(2-\lambda)-p}{q}}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right]^{p}\right\}^{\frac{1}{p}} \\
\leq k_{\lambda}(p)\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{q}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{p-1}} a_{n}^{p}\right\}^{\frac{1}{p}}<\infty . \tag{19}
\end{gather*}
$$

It follows that (18) takes the form of strict inequality by using (11); so does (19). Then (15) holds.

On the other hand, suppose that (15) holds. By Hölder's inequality, one has

$$
\begin{aligned}
& \sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{\lambda}} \\
= & \sum_{n=n_{0}}^{\infty}\left\{\left[\frac{\left(u^{\prime}(n)\right)^{q-1}}{(u(n))^{\frac{2(2-\lambda)}{p}-1}}\right]^{\frac{1}{q}} \sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right\}\left\{\left[\frac{(u(n))^{\frac{2(2-\lambda)}{p}-1}}{\left(u^{\prime}(n)\right)^{q-1}}\right]^{\frac{1}{q}} b_{n}\right\} \\
\leq & \left\{\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{\frac{2(2-\lambda)-p}{q}}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{\lambda}}\right]^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{(u(n))^{\frac{2}{p}(2-\lambda)-1}}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{q}}(20)
\end{aligned}
$$

Then by (15), one has (11). Hence (15) and (11) are equivalent. The theorem is proved.

REMARK 2. 4. For $\alpha=\lambda=1$ in (12) and (16), one has the following equivalent inequalities:

$$
\begin{gather*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{1+m n}<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left\{\sum_{n=1}^{\infty} n^{\frac{2}{q}-1} a_{n}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} n^{\frac{2}{p}-1} b_{n}^{q}\right\}^{\frac{1}{q}} ; \tag{21}\\
\sum_{n=1}^{\infty} n^{p-\frac{2}{q}-1}\left(\sum_{m=1}^{\infty} \frac{a_{m}}{1+m n}\right)^{p}<\left[\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\right]^{p} \sum_{n=1}^{\infty} n^{\frac{2}{q}-1} a_{n}^{p}, \tag{22}
\end{gather*}
$$

which are similar to (2) and (6).

3 Some reversions

THEOREM 3.1. If $0<p<1, \frac{1}{p}+\frac{1}{q}=1, u(t)$ is a differentiable strict increasing function in $\left(n_{0}-1, \infty\right)\left(n_{0} \in N\right)$, such that $u\left(\left(n_{0}-1\right)+\right)=0$ and $u(\infty)=\infty$, and $u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing; $a_{n}, b_{n} \geq 0$, satisfy

$$
0<\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p}}{u(n)} a_{n}^{p}<\infty \text { and } 0<\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-q}}{u(n)} b_{n}^{q}<\infty,
$$

then one has

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{2}}>\left\{\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p} a_{n}^{p}}{\left(1+u\left(n_{0}\right) u(n)\right) u(n)}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-q} b_{n}^{q}}{u(n)}\right\}^{\frac{1}{q}} \tag{23}
\end{equation*}
$$

In particular,
(i) setting $u(t)=t^{\alpha}(0<\alpha \leq 1 ; t \in(0, \infty))$, one has

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{\left[1+(m n)^{\alpha}\right]^{2}}>\frac{1}{\alpha}\left\{\sum_{n=1}^{\infty} \frac{a_{n}^{p}}{\left(1+n^{\alpha}\right) n^{p(\alpha-1)+1}}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} \frac{b_{n}^{q}}{n^{q(\alpha-1)+1}}\right\}^{\frac{1}{q}} \tag{24}
\end{equation*}
$$

(ii) setting $u(t)=\ln t(t \in(1, \infty))$, one has

$$
\begin{equation*}
\sum_{n=2}^{\infty} \sum_{m=2}^{\infty} \frac{a_{m} b_{n}}{(1+\ln m \ln n)^{2}}>\left\{\sum_{n=2}^{\infty} \frac{n^{p-1} a_{n}^{p}}{(1+\ln 2 \ln n) \ln n}\right\}^{\frac{1}{p}}\left\{\sum_{n=2}^{\infty} \frac{n^{q-1} b_{n}^{q}}{\ln n}\right\}^{\frac{1}{q}} \tag{25}
\end{equation*}
$$

Proof. By the reverse Hölder's inequality with weight (see [12]), using the reverse (14) for $\lambda=2$, one has

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{2}} \geq\left\{\sum_{m=n_{0}}^{\infty} \frac{\omega(m)}{\left(u^{\prime}(m)\right)^{p-1}} a_{m}^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{\omega(n)}{\left(u^{\prime}(n)\right)^{q-1}} b_{n}^{q}\right\}^{\frac{1}{q}} \tag{26}
\end{equation*}
$$

where $\omega(m):=\omega_{2}(r, m)=\sum_{n=n_{0}}^{\infty} \frac{1}{(1+u(m) u(n))^{2}} u^{\prime}(n)(r=p, q)$. Since $u^{\prime}(t)\left(t \in\left(n_{0}-\right.\right.$ $1, \infty)$) is decreasing, one has

$$
\begin{aligned}
\frac{1}{u(m)}\left(\frac{1}{1+u\left(n_{0}\right) u(m)}\right) & =\int_{n_{0}}^{\infty} \frac{u^{\prime}(t)}{(1+u(m) u(t))^{2}} d t<\omega(m) \\
& <\int_{n_{0}-1}^{\infty} \frac{u^{\prime}(t)}{(1+u(m) u(t))^{2}} d t=\frac{1}{u(m)} .
\end{aligned}
$$

then by (26), since $q<0$, one has (23). The theorem is proved.
THEOREM 3.2. If $p<1, p \neq 0, \frac{1}{p}+\frac{1}{q}=1, u(t)$ is a differentiable strict increasing function in $\left(n_{0}-1, \infty\right)\left(n_{0} \in N\right)$, such that $u\left(\left(n_{0}-1\right)+\right)=0$ and $u(\infty)=\infty$, and $u^{\prime}(t)\left(t \in\left(n_{0}-1, \infty\right)\right)$ is decreasing; $a_{n} \geq 0$, satisfy $0<\sum_{n=n_{0}}^{\infty} \frac{a_{n}^{p}}{u(n)\left(u^{\prime}(n)\right)^{p-1}}<\infty$, then
(i) for $0<p<1$, one has the equivalent form of (23) as

$$
\begin{equation*}
\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{1-p}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right]^{p}>\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p} a_{n}^{p}}{\left(1+u\left(n_{0}\right) u(n)\right) u(n)} \tag{27}
\end{equation*}
$$

(ii) for $p<0$, one has the reversion of (27), which is equivalent to (23) for the same $p(<0)$.

Proof. Set b_{n} as

$$
b_{n}:=\frac{u^{\prime}(n)}{(u(n))^{1-p}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right]^{p-1}
$$

and use (23) to obtain

$$
\begin{align*}
& 0<\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)}=\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{1-p}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right]^{p} \\
&=\sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{2}} \\
& \geq\left\{\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p} a_{n}^{p}}{\left(1+u\left(n_{0}\right) u(n)\right) u(n)}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-q} b_{n}^{q}}{u(n)}\right\}^{\frac{1}{q}} ; \tag{28}\\
&\left\{\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)}\right\}^{\frac{1}{p}}=\left\{\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{1-p}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right]^{p}\right\}^{\frac{1}{p}} \\
& \geq\left\{\sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p} a_{n}^{p}}{\left(1+u\left(n_{0}\right) u(n)\right) u(n)}\right\}^{\frac{1}{p}} ; \tag{29}
\end{align*}
$$

(i) For $0<p<1$, if $\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)}<\infty$, then (28) takes strict inequality by using (23); so does (29); if $\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)}=\infty$, then (29) takes strict inequality. Hence (27) holds.
(ii) For $p<0,0<q<1$, by (29), one has

$$
0<\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)} \leq \sum_{n=n_{0}}^{\infty} \frac{\left(u^{\prime}(n)\right)^{1-p} a_{n}^{p}}{\left(1+u\left(n_{0}\right) u(n)\right) u(n)}<\infty .
$$

Hence (28) takes strict inequality by using (23); so does (29). Hence the reversion of (27) is valid.

On the other hand, (i) for $0<p<1$, suppose that (27) holds. By the reverse Hölder's inequality, one has

$$
\begin{align*}
& \sum_{n=n_{0}}^{\infty} \sum_{m=n_{0}}^{\infty} \frac{a_{m} b_{n}}{(1+u(m) u(n))^{2}} \\
= & \sum_{n=n_{0}}^{\infty}\left\{\left[\frac{\left(u^{\prime}(n)\right)^{q-1}}{(u(n))^{-1}}\right]^{\frac{1}{q}} \sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right\}\left\{\left[\frac{(u(n))^{-1}}{\left(u^{\prime}(n)\right)^{q-1}}\right]^{\frac{1}{q}} b_{n}\right\} \\
\geq & \left\{\sum_{n=n_{0}}^{\infty} \frac{u^{\prime}(n)}{(u(n))^{1-p}}\left[\sum_{m=n_{0}}^{\infty} \frac{a_{m}}{(1+u(m) u(n))^{2}}\right]^{p}\right\}^{\frac{1}{p}}\left\{\sum_{n=n_{0}}^{\infty} \frac{b_{n}^{q}}{\left(u^{\prime}(n)\right)^{q-1} u(n)}\right\}^{\frac{1}{q}} . \tag{30}
\end{align*}
$$

Then by (27), one has (23). Hence (27) and (23) are equivalent. (ii) For $p<0$, suppose that the reversion of (27) holds. By (30), one still has (23). Hence the reversion of (27) and inequality (23) are equivalent for $p<0$. The theorem is proved.

REMARK 3.3. For $p<1, p \neq 0, \alpha=1$ in (24), one has

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(1+m n)^{2}}>\left\{\sum_{n=1}^{\infty} \frac{a_{n}^{p}}{(1+n) n}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} \frac{b_{n}^{q}}{n}\right\}^{\frac{1}{q}} \tag{31}
\end{equation*}
$$

which is a reversion of (12) for $\lambda=2$ and $\alpha=1(p>1)$ as

$$
\begin{equation*}
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{a_{m} b_{n}}{(1+m n)^{2}}<\left\{\sum_{n=1}^{\infty} \frac{a_{n}^{p}}{n}\right\}^{\frac{1}{p}}\left\{\sum_{n=1}^{\infty} \frac{b_{n}^{q}}{n}\right\}^{\frac{1}{q}} \tag{32}
\end{equation*}
$$

References

[1] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge University Press, Cambridge, 1952.
[2] G. H. Hardy, Note on a theorem of Hilbert concerning series of positive term, Proc. London Mat. Soc., 23(1925), Records of Proc. xlv-xlvi.
[3] D. S. Mintrinovic, J. E. Pecaric and A. M. Fink, Inequalities Involving Functions and Their Integrals and Derivertives, Kluwer Academic Publishers, Boston, 1991.
[4] Yang Bicheng and Gao Mingzhe, On a best value of Hardy-Hilbert's inequality, Advances in Math.,26:2(1997),159-164.
[5] Gao Mingzhe and Yang Bicheng, On the extended Hilbert's inequality, Proc. Amer. Math. Soc., 126:3(1998),751-758.
[6] Yang Bicheng and L. Debnath, On the extended Hardy-Hilbert's inequality, J. Math. Anal. Appl., 272(2002),187-199.
[7] Yang Bicheng, On generalizations of Hardy-Hilbert's inequality and their equivalent forms, J. Math., 24:1(2004), 24-30.
[8] Yang Bicheng, On a generalization of Hilbert's double series theorem, J. Nanjing Univ. Math. Biquarterly, 18:1(2001),145-152.
[9] B. Yang and T. M. Rassias, On the way of weight coefficient and research for the Hilbert-type inequalities, Math. Ineq. Appl.,6:4(2003),625-658.
[10] Yang Bicheng, A reverse of Hardy-Hilbert's integral inequality, Journal of Jilin Univ.(Science Edition), 42:4(2004).
[11] Wang Zhuxi and Guo Dunrin, An Introduction to Special Functions, Science Press, Beijing, 1979.
[12] Kuang Jichang, Applied Inequalities, Shangdong Science and Technology Press, 2004.

Department of Mathematics, Guangdong Institute of Education, Guangzhou, Guangdong 510303, P. R. China
E-mail: bcyang@pub.guangzhou.gd.cn

[^0]: Received by the editors November 2004.
 Communicated by F. Bastin.
 1991 Mathematics Subject Classification : 26D15.
 Key words and phrases : Hilbert's inequality, weight coefficient, Beta function.

