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Abstract

In this paper we describe various methods of constructing new paratopo-

logical vector spaces from given ones. First, we introduce the notion of a

right dual of a paratopological vector space with the aim to define a right

weak topology. We prove that, in a certain class of normed spaces, the classi-

cal weak topology is determined by a right weak topology. Next, the quotient

topology in the context of paratopological vector spaces is discussed. Finally,

we consider the projective limit of paratopological vector spaces and prove

that every pseudoconvex space is a projective limit of quasi-normed spaces.

1 Introduction and preliminaries

A paratopological group [5] is a triple (X, +, τ) such that (X, +) is a group and τ is
a topology on X for which the operation + is continuous.

If (X, +, τ) is a paratopological group, then so is (X, +,−τ), where −τ =
{A ⊆ X : −A ∈ τ} is called the conjugate topology of τ . Clearly, the map x → −x
is a homeomorphism from (X, τ) onto (X,−τ).

It is well known that if (X, +, τ) is a paratopological group, then (X, +, τ ∗) is a
Hausdorff topological group, where τ ∗ = τ ∨ (−τ).
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Paratopological groups are called quasi-topological groups in [8] and [17] (see
also [18] and [15]), where these structures are studied by means of the properties
of three canonical quasi-uniformities that one can introduce in a natural way on a
paratopological group.

If (X, +, ·) is a real vector space and τ is a topology on X, (X, +, ·, τ) is said
to be a paratopological vector space if (X, +, τ) is a paratopological group such that
for each neighborhood U of rx, with x ∈ X and r ∈ R

+ (the set of nonnegative real
numbers), there exist a neighborhood V of x and an ε > 0 such that [r, r+ε[·V ⊆ U.

These spaces were introduced in [1], calling them pseudotopological vector spaces.
If (X, +, ·, τ) is a paratopological vector space, (X, +, ·,−τ) is also a paratopo-

logical vector space. Furthermore (X, +, ·, τ ∗) is a Hausdorff topological vector space
[1].

In the following both the paratopological vector space (X, +, ·, τ) and the parato-
pological group (X, +, τ) will be simply denoted by (X, τ), or by X, if no confusion
arises.

By the continuity of the sum, if B is a base of neighborhoods of the origin of
(X, τ), then x+B is a base of neighborhoods of x. So, the whole topological structure
of X is determined by a base of neighborhoods of the origin.

A subset A of a real vector space X is called semibalanced (quasi-balanced in
[1]) if for each x ∈ A , rx ∈ A whenever 0 ≤ r ≤ 1. It is absorbent if for each x ∈ X
there is some t > 0 such that x ∈ rA for all r ≥ t. The set A is called convex if
for all x, y ∈ A, rx + (1 − r)y ∈ A whenever 0 ≤ r ≤ 1. Clearly, every convex set
containing the origin is semibalanced.

Every neighborhood of the origin in a paratopological vector space is absorbent
and contains a semibalanced neighborhood of the origin [1].

If there is a base of neighborhoods of the origin consisting of convex sets, the
paratopological vector space is called a pseudoconvex vector space ([3]),or simply
a pseudoconvex space if no confusion arises. Such spaces are an extension of the
locally convex vector spaces.

A useful tool for the analytical description of certain convex sets is the concept
of a subnorm. A nonnegative real valued function p defined on a real vector space
X is said to be a subnorm if it is subadditive and positively homogeneous.

If U is a convex and semibalanced neighborhood of the origin in the paratopo-
logical vector space (X, τ), then the Minkowski functional of U is a subnorm on X
[1].

If Q is a family of subnorms on a real vector space X, there is a coarsest topology
on X which turns X into a pseudoconvex vector space in which every subnorm of
Q is upper semicontinuous [1].

By a quasi-metric on a set X (compare [9]) we mean a function d : X ×X → R
+

such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y, and (ii) d(x, y) ≤
d(x, z) + d(z, y).

According to [7], a quasi-norm on a real vector space X is a subnorm q on X
that satisfies the following condition: q(x) = q(−x) = 0 ⇔ x = 0.

Quasi-norms are called nonsymmetric norms in [4] and asymmetric norms in
[11] and [12].

A quasi-normed space is a pair (X, q) such that X is a real vector space and q is
a quasi-norm on X.
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If q is a quasi-norm on a real vector space, then the function q−1 defined on X by
q−1(x) = q(−x) is also a quasi-norm on X, called the conjugate of q. The function
q∗ defined on X by q∗(x, y) = max{q(x), q−1(x)} is a norm on X.

Each quasi-norm q on a real vector space X induces a quasi-metric dq on X
defined by

dq(x, y) = q(y − x),

for all x, y ∈ X. We refer to the topology T (dq) as the topology induced by q.
Furthermore, and by Theorem 4.6 of [7], (X, T (dq)) is clearly a pseudoconvex

vector space where the sets of the form

V (0, ε) = {x ∈ X : q(x) < ε}, ε > 0,

constitute a fundamental system of neighborhoods of 0 for the topology T (dq).
It seems interesting to point out that in the last years it has been shown that

several nonsymmetric structures from topological algebra and functional analysis, as
locally convex cones and quasi-normed (semi)linear spaces, constitute efficient tools
in the study of some questions in Theoretical Computer Science ([10],[21], [23], [24])
and Approximation Theory ([4], [6], [14], [20]), respectively.

2 The right weak topology

We define the right dual of a paratopological vector space (X, τ) as the space of
functions

X
′

r = {f : (X, τ) → (R, u) : f is linear and continuous}

where (R, u) is the paratopological vector space induced by the quasi-norm u defined
on R by u(x) = max{x, 0}.

Note that f : X → R is in X
′

r if and only if it is a linear and upper semicontinuous
function on (X, τ).

A recent study of duality in the realm of quasi-normed spaces is given in [12].
Obviously, X

′

r is not a vector space in general for the pointwise usual operations.
Indeed, denote by id the identity function on (R, u). Then id belongs to the right
dual of (R, u). However, it is clear that −id is not continuous from (R, u) into itself.

It is easy to check that X
′

r admits the structure of a cone in the sense of [14].
We define the left dual of (X, τ) as the right dual of the paratopological vector

space (X,−τ) and denote it by X
′

l . It is clear that X
′

r = −X
′

l .
If X is a topological vector space, then X

′

r = X
′

l since in this case a linear function
f is upper semicontinuous if and only if it is lower semicontinuous. Therefore X

′

r

is the topological dual of X, that is, the real vector space of all the linear and
continuous functions on X, denoted by X

′

in the usual terminology of topological
vector spaces.

In the introduction the concept of a quasi-normed space was recalled. In [7]
we exhibited a natural class of examples of quasi-normed spaces, the normed linear
lattices. In fact, we proved that whenever X is a normed lattice, the quasi-norm
q(x) = ‖x+‖ with x+ = sup{x, 0} determines the topology and order of X in the
sense of [9]. Moreover, if X

′

is the topological dual of the normed lattice (X, ‖ ‖)
and X

′

r is the right dual of the pseudoconvex space determined by the quasi-normed
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space (X, q), it follows, by Proposition 4.3 of [7], that X
′

r is the cone of positive
elements of X ′.

If (X, τ) is a paratopological vector space, the sets

V ǫ
f1,f2,...,fn

= {x ∈ X : f1(x) < ǫ, f2(x) < ǫ, . . . , fn(x) < ǫ}

with f1, f2, . . . , fn ∈ X
′

r, ǫ > 0, n ∈ N, form, by Theorem 4.2 of [1] a base B of
neighborhoods of the origin for a topology turning X into a pseudoconvex vector
space. We define this topology as the right weak topology and denote it by σ(X, X

′

r).
By definition, it is obvious that σ(X, X

′

r) is the coarsest topology on X under
which all the elements of X

′

r are upper semicontinuous functions.

Proposition 1. Let (X, τ) be a paratopological vector space. The right dual of the
paratopological vector space (X, σ(X, X

′

r)) coincides with X
′

r.

Proof. Since σ(X, X
′

r) is coarser than τ , X
′

r contains the right dual of
(X, σ(X, X

′

r)). On the other hand, if f ∈ X
′

r then f−1(] − ∞, ǫ[) is a σ(X, X
′

r)
-neighborhood of the origin, so that f is in the right dual of (X, σ(X, X

′

r)). �

Next, we shall prove that if (X, τ) is a T0 pseudoconvex space, its dual X
′

r

separates points in X. To this end, we begin by establishing a lemma which is a
consequence of an algebraic version of the Hahn-Banach theorem.

Lemma 1. Let X be a real vector space and a ∈ X. If p is a subnorm on X, then
there is a linear function f : X → R such that −p(−x) ≤ f(x) ≤ p(x) for all x ∈ X
and f(a) = p(a).

Proof. Let M be the vector subspace spanned by a. Define f1(λa) = λp(a) for all
λ ∈ R. If λ ≥ 0, f1(λa) = p(λa) and if λ < 0, f1(λa) = λp(a) ≤ 0 ≤ p(λa), so
f1 ≤ p. Therefore, by Theorem 3.2 of [22], there exists a linear function f : X → R

such that f extends f1 and −p(−x) ≤ f(x) ≤ p(x). Clearly f(a) = p(a). �

Proposition 2. Let (X, τ) be a T0 pseudoconvex space. If f(a) = 0 for every
f ∈ X

′

r, then a = 0.

Proof. Suppose that a 6= 0. Then, since (X, τ) a T0 pseudoconvex space, there is
an upper semicontinuous subnorm p on X such that p(a) 6= 0 or p(−a) 6= 0. If
p(a) 6= 0, by Lemma 1, there is f : X → R linear such that −p(−x) ≤ f(x) ≤ p(x)
for all x ∈ X and f(a) = p(a). Therefore, since p−1(] − ∞, ǫ[) ⊂ f−1(] − ∞, ǫ[),
f ∈ X

′

r and f(a) 6= 0 which is a contradiction. If p(−a) 6= 0 the proof is similar. �

Proposition 3. If (X, τ) is a T0 pseudoconvex space then (X, σ(X, X
′

r)) is a T0

(pseudoconvex) space.

Proof. By the previous proposition, we have that

⋂

V ∈B

V ∩ (−V ) =
⋂

f∈X
′

r

⋂

ǫ>0

f−1(] − ǫ, ǫ[) =
⋂

f∈X
′

r

f−1(0) = 0.

Thus, (X, σ(X, X
′

r)) is obviously a T0 space. �
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Let us recall that if (X, τ) is a T0 paratopological vector space, then (X, τ ∗) is
a Hausdorff topological vector space, where τ ∗ = τ ∨ (−τ). If X

′

is the topological
dual of (X, τ ∗) then σ(X, X

′

) is the usual weak topology of X. We shall study the
relationship between σ(X, X

′

) and the right weak topology of X.

Proposition 4. If (X, τ) is a T0 paratopological vector space, then the topology
σ(X, X

′

r) ∨ (−σ(X, X
′

r)) is coarser than σ(X, X
′

).

Proof. Since X
′

r ⊂ X
′

, then σ(X, X
′

r) is coarser than σ(X, X
′

).
Now, since (X, σ(X, X

′

)) is a topological vector space, the topology −σ(X, X
′

r) is
also coarser than σ(X, X

′

). Hence, σ(X, X
′

r)∨(−σ(X, X
′

r)) is coarser than σ(X, X
′

).
�

The effort to find examples in which the topology σ(X, X
′

r)∨ (−σ(X, X
′

r)) is not
equal to σ(X, X

′

) was in vain. In the sequel of this section we present two results
that might support a conjecture on the equality.

Proposition 5. If (X, τ) is a finite dimensional T0 paratopological vector space,
then σ(X, X

′

r) ∨ (−σ(X, X
′

r)) =σ(X, X
′

).

Proof. The statement follows immediately from the well-known fact that a finite-
dimensional vector space has only one topology under which it is a separated convex
space. �

Theorem 1. Let (X, ‖ ‖) be a real normed lattice, and let q(x) = ‖x+‖ . If (X, τ)
is the pseudoconvex space determined by the quasi-norm q and X

′

r is its right dual,
then σ(X, X

′

r) ∨ (−σ(X, X
′

r)) = σ(X, X
′

).

Proof. First, it is convenient to notice that the sets

B(u1, u2, . . . , un ǫ) =
n⋂

i=1

u−1

i (] − ǫ, ǫ[)

with u1, u2, . . . , un ∈ X
′

r and ǫ > 0 are a base of neighborhoods of the origin for the
topology σ(X, X

′

r) ∨ (−σ(X, X
′

r)).
Let V be a σ(X, X

′

)-neighborhood of the origin. Then, there exist ǫ > 0 and
v1, v2, . . . , vn ∈ X

′

such that

n⋂

i=1

v−1

i (] − ǫ, ǫ[) ⊂ V.

By the Riesz decomposition theorem [16], vi = (vi)
+ − (−vi)

+, where (vi)
+ and

(−vi)
+ are linear continuous and positive functions on (X, ‖ ‖). So, by Corollary 1

of [2], (vi)
+ and (−vi)

+ ∈ X
′

r for each i. Therefore, the set

W = B(v+

1 , v+

2 , . . . , v+

n , ǫ/2) ∩ B((−v1)
+, (−v2)

+, . . . , (−vn)+, ǫ/2)

is a σ(X, X
′

r) ∨ (−σ(X, X
′

r))-neighborhood of the origin and it holds that

W ⊂
n⋂

i=1

v−1

i (] − ǫ, ǫ[) ⊂ V.

�
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3 Quotient paratopological vector spaces

Let X be a real vector space and let M be a vector subspace of X and let φ be
the canonical mapping of X onto X/M , that is, the mapping which assigns to each
x ∈ X its equivalence class x̂ = x + M .

If (X, τ) is a paratopological vector space and U is a base of semibalanced neigh-
borhoods of the origin, by Theorem 4.2 of [1], the sets φ(U) with U ∈ U form a base
of neighborhoods of the origin in a topology τ̂ on X/M , called quotient topology,
under it X/M is a paratopological vector space. Besides, if (X, τ) is a pseudoconvex
space, the quotient paratopological vector space is a pseudoconvex space.

On the other hand, if p is the Minkowski functional of the convex and semibal-
anced neighborhood U of the origin, the Minkowski functional of φ(U) is given by

p̂(x̂) = inf{λ : λ ≥ 0, x̂ ∈ λφ(U)}.

Now, x̂ ∈ λφ(U) if and only if x̂ = ŷ with y ∈ λU , then

p̂(x̂) = inf{inf{λ : λ ≥ 0, y ∈ λU}, y ∈ x̂}.

Hence
p̂(x̂) = inf{p(y) : y ∈ x̂}.

Next we study some properties of quotients of paratopological spaces.

Proposition 6. If (X, τ) is a paratopological vector space and F is a vector subspace
of X, then F is closed in (X, τ) if and only if F is closed in (X,−τ).

Proof. Suppose F is closed in (X, τ) and x /∈ F . Since −x /∈ F , there is a neighbor-
hood U of the origin in (X, τ) such that −x+U ⊂ X−M . Therefore, x−U ⊂ X−M
and so X − M is closed in (X,−τ). �

Proposition 7. X/M is a T1 space if and only if M is a closed subset of (X, τ).

Proof. Since M = 0̂ in the vector space X/M , by Proposition 2.3.3 of [13], we
conclude the result. �

Proposition 8. If X/M is a T0 space then M is closed in (X, τ ∗)

Proof. Suppose M is not closed in (X, τ ∗). Then, if x /∈ M , we have

(x + U ∩ (−U)) ∩ M 6= ∅

for all neighborhoods U of the origin in (X, τ). Thus,

x ∈ U ∩ (−U) + M ⊂ (U + M) ∩ (−U + M) = φ(U) ∩ φ(−U),

and therefore x ∈
⋂

U∈B

φ(U) ∩ φ(−U). Now, since X/M is a T0 space, we have that

⋂

U∈B

φ(U) ∩ φ(−U) = M,

thus x ∈ M , which is a contradiction. �
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In the following example we show that the converse of this property is not true.

Example 1. Consider the paratopological vector space (R2, u), where R is the
usual vector space and u is the topology induced by the quasi-norm defined on R

2

by u(x, y) = max{x+, y+}. Let M = {(x, y) ∈ R
2 : y = x}. M is a closed vector

subspace in (R2, u∗), but R
2/M is not a T0 space since û is the trivial topology on

R
2/M .

This example shows also that if (X, τ) is a paratopological vector space, then
the topology τ̂ ∨ (−τ̂ ) is coarser than the quotient topology of τ ∨−τ . Furthermore,
we have shown that the quotient of a T0 paratopological space is not a T0 space.

4 Projective limits of paratopological vector spaces

In this section we define the projective limit of a family of paratopological vector
spaces. We shall follow a process that is analogous to the one which appears in [19]
for the definition of the projective limit of locally convex spaces.

Theorem 2. Let X be a vector space, and for each i ∈ I let fi be a linear mapping
from X into the paratopological vector space (Xi, τi), such that

⋂

i∈I

f−1

i (0) = {0}.

Then there is a coarsest topology on X for which all the fi are continuous and which
makes X into a paratopological vector space. If Bi is a base of neighborhoods in
Xi, the finite intersections of the sets f−1

i (U) (U ∈ Bi, i ∈ I), form a base B of
neighborhoods of the origin for X with respect to this topology.

Proof. By Theorem 4.2 of [1], the sets of B form a base of neighborhoods of the
origin in a topology on X under which X is a paratopological vector space and,
obviously, it is the coarsest topology making the functions fi continuous. �

The vector space X endowed with this topology is called the projective limit of
the paratopological vector spaces Xi with the mappings fi. Obviously, if Xi is a
pseudoconvex space for all i ∈ I, the projective limit is also a pseudoconvex space.

Proposition 9. If for each i ∈ I, Xi is a T0 space, then its projective limit X is a
T0 space.

Proof. Since Xi is a T0 space for all i ∈ I, we have that
⋂

V ∈B

V ∩ (−V ) =
⋂

i∈I

f−1

i (
⋂

U∈Bi

U ∩ (−U)) =
⋂

i∈I

f−1

i (0) = {0}.

�

In [3] the concepts of right-bounded and right-precompact sets in a paratopolog-
ical vector space were defined. A subset A of a paratopological vector space (X, τ)
is right-bounded if for each neighborhood V of the origin there is s > 0 such that
A ⊆ tV whenever t > s. A is right-precompact if for each neighborhood V of the
origin there are points a1, a2, . . . , an of A such that A ⊂

⋃n
i=1(ai + V ). If A is right-

bounded or right-precompact in (X,−τ), A is called left-bounded or left precompact
in (X, τ), respectively. We can give a characterization of these sets in a projective
limite in a way that is analogous to the characterization of bounded or precompact
sets in a projective limit of topological vector spaces.
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Proposition 10. Let X be the projective limit of the paratopological spaces Xi with
the mappings fi. Then a subset A of X is right-bounded, or right- precompact, if
and only if each fi(A) has the same property.

One of the most immediate examples of a projective limit is the right weak
topology on any paratopological vector space X, obtained by taking for (fi) the set
of all upper semicontinuous linear forms of X (so that each Xi is R).

It is well known that every separated locally convex space is a projective limit of
normed spaces. We next show the analogous property in the realm of pseudoconvex
spaces.

Theorem 3. Let X be a real vector space and τ a topology on X. Then (X, τ) is
a T0 pseudoconvex space if and only if (X, τ) is a projective limit of quasi-normed
spaces.

Proof. Suppose (X, τ) is a T0 pseudoconvex space and let B be a base of convex
and semibalanced neighborhoods of the origin. Let P be the family of Minkowski
functionals of the elements of B. If p ∈ P, p is a subnorm and the set Mp =
p−1(0) ∩ (−p)−1(0) is a vector subspace of X. For each p ∈ P, we consider the
quotient space X/Mp. In this space the function p̂(x̂) = inf{p(x + m) : m ∈ Mp} is
a subnorm. Now, we shall show that p̂ is a quasi-norm.

Indeed, if p̂(x̂) = p̂(−x̂) = 0, then given n ∈ N there is m ∈ Mp such that
p(x + m) < 1/n. Thus, p(x) ≤ p(x + m) + p(−m) < 1/n and therefore p(x) = 0. In
an analogous way we prove that p(−x) = 0. Hence x ∈ Mp and then x̂ = 0̂.

Next, we shall prove that (X, τ) is the projective limit of the quasi-normed spaces
(X/Mp, p̂) with the canonical mappings φp.

Since (X, τ) is a T0 space, we have that

⋂

p∈P

p−1(0) ∩ (−p)−1(0) = {0},

and then
⋂

p∈P

φ−1

p (0̂) = {0}.

On the other hand, since φp are continuous, the projective limit is coarser than
τ . Now, if U is a neighborhood of the origin in (X, τ), there is p ∈ P such that
V = {x ∈ X : p(x) < 1} ⊂ U . We prove that U is a neighborhood of the origin in
the projective limit, by showing that φ−1

p ({x̂ : p̂(x̂) < 1}) ⊂ V.
If p̂(ŷ) < 1, there is x ∈ ŷ such that p(x) < 1. Since x − y ∈ Mp we have that

p(y) ≤ p(y − x) + p(x) = p(x) < 1 and so y ∈ V .
The converse is obvious, since a quasi-normed space is a pseudoconvex space

and the projective limit of T0 pseudoconvex spaces is a T0 pseudoconvex space as
we have observed above. �

In the next example we construct the quasi-normed spaces whose projective limit
defines the right weak topology, according to the proof of the above theorem.

Example 2. Let (X, τ) be a paratopological vector space and σ(X, X
′

r) its right
weak topology. First, we prove that if f ∈ X

′

r and U = {x ∈ X : f(x) < ǫ}, then
the Minkowski functional of U coincides with 1

ǫ
f+, where f+(x) = (f(x))+.
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In fact, if q is the Minkowski functional of U , since 1

ǫ
f(x) ≤ 1

ǫ
f+(x), we have

that q ≤ 1

ǫ
f+. Now, if f(x) ≥ 0, then 1

ǫ
f+(x) = 1

ǫ
f(x) and so 1

ǫ
f+(x) ≤ q(x). On

the other hand, if f(x) ≤ 0, then 1

ǫ
f+(x) = 0, hence 1

ǫ
f+(x) ≤ q(x). Thus, q = 1

ǫ
f+.

Let V be the σ(X, X
′

r)-neighborhood of the origin

V = {x ∈ X : f1(x) < ǫ, f2(x) < ǫ, . . . , fn(x) < ǫ}

with f1, f2, . . . , fn ∈ X
′

r and ǫ > 0, and let p be the Minkowski functional of V . If
Vi = {x ∈ X : fi(x) < ǫ} and pi its Minkowski functional, since

V =
⋂

1≤i≤n

Vi,

it follows that p = sup{pi : 1 ≤ i ≤ n} = sup{1

ǫ
f+

i : 1 ≤ i ≤ n}.
We shall now prove that

p−1(0) ∩ (−p)−1(0) =
⋂

1≤i≤n

Kerfi.

In fact, if p(x) = p(−x) = 0, then nx ∈ V and −nx ∈ V for each n ∈ N, therefore
fi(x) ≤ 0 and fi(−x) ≤ 0. Thus, fi(x) = 0, for each i. Now, if fi(x) = 0, then
λx ∈ V and λ(−x) ∈ V for each λ > 0, and thus p(x) = p(−x) = 0.

Furthermore,

p̂(x̂) = inf{p(x + m) : m ∈
⋂

1≤i≤n

Kerfi} =

inf{
1

ǫ
sup1≤i≤n(fi(x + m))+ : m ∈

⋂

1≤i≤n

Kerfi} =

=
1

ǫ
sup1≤i≤n(fi(x))+ = p(x)
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