Spectral semi-norm of a p-adic Banach algebra

Alain Escassut Nicolas Mainetti

Abstract

Let K be a complete ultrametric algebraically closed field, with respect to a
non trivial absolute value, and let A be a commutative K-Banach algebra with
identity. Let Mult(A, || . ||) be the set of continuous multiplicative semi-norms
of K-algebra (with respect to the norm || . || of A) and let Mult,,(A,| . ||) the
set of the ¢ € Mult(A, || . ||) whose kernel is a maximal ideal of A. If the norm
of A is equal to its spectral semi-norm || . ||s; defined as ||z||s; = nll)rfm | =" H%,
we prove that ||t||s; = sup{e(t)| ¥ € Mult,,, (A, | . ||)}, without any additional
condition on K. Moreover, if A has no divisors of zero, denoting by s(x) the
spectrum of any x € A, we have ||t||s; = sup{|A| | A € s(z)}. If sup{|\| | A €
s(t)} = ||t||si for every t € A, then s(t) is infraconnected for all ¢ € A if and
only if A has no non trivial idempotents. In particular, this applies when
A has no divisors of zero. In Mult(A,|| . ||) we define pseudo-dense sets,
and show that a subset 3 of Mult(A, | . ||) containing Mult,,(A,] . ||) is
pseudo-dense if and only if for all ¢ € A we have ||t||s; = sup{y(¢)| ¥ € X}.

1 Introduction and results

Let L be a complete ultrametric field, and let K be a complete ultrametric algeb-
raically closed field with respect to a non trivial absolute value. L is said to be
strongly valued if its residue class field, or if its valuation group, is not countable.
As usual, given a € K, r > 0, we put d(a,r7) ={z € K | |z —a| <7}, d(a,r") =
{reK||z—a|l<r}, Cla,r)={z€ K| |r—a|]=r}.

Besides, given s > r, we put I'(a,r, s) = d(a,s) \ d(a, ).
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A set D in K is said to be infraconnected if for every a € D, the mapping I, from
D to R, defined by I,(x) = |x — a| has an image whose closure in R is an interval.
(In other words, a set D is not infraconnected if and only if there exist a and b € D
and an annulus I'(a,r1,7m2) with 0 < 1 < ro < |a —b| such that T'(a,r1,7m2) N D = 0).

Given a closed bounded set D in K, we denote by R(D) the K-algebra of rational
functions with no pole in D, by || . || p the norm of uniform convergence on D, and by
H(D) the completion of R(D) for this norm, which is called the K-Banach algebra
of analytic elements in D.

Given a ring R, Max(R) denotes the set of maximal ideals of R. Let F' be an

algebraically closed field and let B be F-algebra with identity. Given t € B, s(t)
will denote the spectrum of ¢, (i.e. the set of the A\ € F such that ¢ — \is not
invertible ).

Let A be a commutative L-normed algebra with identity, whose norm is de-

noted by || . ||. A norm of L-algebra ¢ on a L-algebra B will be said to be semi-
multiplicative if it satisfies (") = ¢(t)" for all t € B.
The map || . ||s; defined in A as ||z = lirf | " H% is an ultrametric semi-norm

of L-algebra called spectral semi-norm of A that obviously satisfies ||z"||s = ||z ||%.

Following Guennebaud’s notations [6] , we denote by Mult(A,|| . ||) the set of
continuous multiplicative semi-norms of K-algebra (with respect to the norm || . ||
of A). So, given ¢ € Mult(A,| . ||), the set of t € A such that ¢(t) = 0 is a closed
prime ideal of A called kernel of ¢, and denoted by Ker(p). Then, we denote by
Mult,,(A, || . ||) the set of ¢ € Mult(A,|| . ||) such that Ker(y) is a maximal ideal
of A.

Given a subset ¥ of Mult(A,||.||), the mapping || . ||z defined as |t||s =
sup{¥(t)| ¥ € X} is obviously seen to be a semi-multiplicative semi-norm of A.
In particular, when ¥ = Mult,,(A, | . ||), we denote by || . ||, this semi-norm.

During the sixties, T.A. Springer proved that given a normed commutative L-
Algebra A, for all z € A, we have ||z|s; = sup{v(z)] ¥ € Mult(A,|.|)} ([9],
Corollary 6.25).

We will denote by (q) and (s) these properties:
(q) sup{|z| | z € s(t)} = ||t||s for every t € A.

) D=1l

Remark: This is an opportunity to correct an inadvertance mistake in [3], The-
orem 1.18. Even assuming that A is complete for || . ||s;, one can’t claim that there
exists p € Mult,,(A, || .||) such that p(z) = ||z||s. Indeed, let D be the disk d(0,17)
in K, and just consider the K-algebra H(D). This norm obviously is the spectral
norm of H(D), and then the identical function x satisfies ||z||p = 1. But every max-
imal ideal M of H (D) has codimension 1, and is characterized by a point a € D. So,
the unique ¢ such that Ker(y¢) = M is defined as ¢(f) = |f(a)| for all f € H(D),
hence of course we have ¢(z) < 1. The mistakes comes from the fact that in the
proof of Theorem 1.18 of [3], in general, ¢ does not belong to Mult,(A,| . ||), be-
cause, (following the notations of the proof), the homomorphism 6 is not necessarly
surjective onto F.
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Now, let A be a commutative K-Banach algebra with identity. In 1976, Escassut
showed that if every maximal ideal of A has codimension 1, then Property (s) holds in
A ([2], Corollary 4.4). (In particular, this applies to Tate’s algebras, whose maximal
ideals are of dimension 1, on an algebraically closed field [10]). Next, using the
holomorphic functional calculus, in [2] Theorem 7.5, he showed that if K is strongly
valued, the equality holds in any commutative K-Banach algebra with identity. But
if K is not strongly valued, by Theorem 7.5 in [2], counter examples show that (s)
does not hold in the general case. In particular, there exists local commutative
K-Banach algebra whose spectral semi-norm is a norm.

When K is strongly valued, property (q) was proven in [2] (Theorem 7.9) ,
in assuming another additional hypothesis, like the integrity of A, but without
assuming the norm to be the spectral norm. But counter examples given in [2] show
this last equality does not hold when K is not strongly valued.

However, here we will obtain such equalities, without assuming K to be strongly
valued, provided the spectral semi-norm || . ||s; of A is a norm equivalent to its K-
Banach algebra norm. This has been made possible thanks to a recent basic result
concerning a partition of any annulus by a family of disks.

In Lemma 0, we recall previous results given in [9].

Lemma O: Let A be a commutative normed L-algebra with identity, and let
x € A. Then ||.||s is an ultrametric semi-multiplicative semi-norm satisfying
|z|lsi = sup{e(x)|p € Mult(A,|.|)} and there exists ¢ € Mult(A,|.||) such
that o(x) = ||x||si. Further, if A is complete, for every M € Max(A) there ez-
ists 1 € Multy,(A, | .|) such that Ker(y) = M, and if M has finite codimension,
such a v 1s unique.

Then we have Theorem 1:

Theorem 1:  Let A be a commutative K -Banach algebra with identity whose norm
of K-Banach algebra is || . ||si. Then Property (s) is satisfied. Furthermore, if A
has no divisors of zero, then Property (q) is satisfied.

Corollary a: Let A be a commutative K-Banach algebra with identity whose
norm of K-Banach algebra is || . ||s;. Then the Jacobson radical of A is null.

However Theorem 2 shows that, even assuming the norm to be the spectral norm,
Properties (s) and (q) are not equivalent.

Theorem 2: There exists a commutative K-Banach algebra with identity whose
norm is || . ||s; which satisfies Property (s) but not Property (q).

Theorem 3:  Let A be a K-Banach algebra with identity, satisfying Property (q).
Then A has no non trivial idempotents, if and only if for every x € A, s(x) is
infraconnected.

Corollary b:  Let A be a commutative K-Banach algebra with identity, with no
divisors of zero, whose norm of K-Banach algebra is || . ||s;. Then for every x € A,
s(x) is infraconnected.
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Theorem 4 shows that Theorem 3 couldn’t be much generalized.

Theorem 4: There exists a commutative K-Banach algebra with identity whose
norm is || . ||si but does not satisfy Property (q), which has no non trivial idempotent,
but has an element = such that s(x) is not infraconnected.

Now, as the set Mult(A,||.||) is provided with the topology of simple conver-
gence, and is compact for it, given a subset 3 in Mult(A,||.||), one can try to
compare the properties:

7Y is dense in Mult(A, | .|)”, and

7 lx|lsi = sup{p(z)| ¢ € X} for every x € A”.

In fact, in the general case, this seems far from easy, due to the various forms of
the neighborhoods of any point, with respect to the topology of simple convergence.
So we define a notion of pseudo-density.

Notation: Given ¢ € Mult(A, | .|), f € A, € >0, we denote by V (¢, f, €) the
set of the ¢ € Mult(A, || .||) such that |o(f) — ¥ (f)] < e.

Remark: So, we have a basis of neighborhoods of any ¢ € Mult(A, | .|) by taking
q
the sets of the form (| V(¢¥, f;, €;), ¢ € N*.

J=1

Definition: A subset ¥ of Mult(A,||.||) will be said to be pseudo-dense in
Mult(A, | .||) if for every ¥ € Mult(A,]|.||), for every f € A, for every ¢ > 0,
we have V (¢, f, e)NX #0.

Remark: By definition, if ¥ is dense in Mult(A,||.||), it is pseudo-dense in
Mult(A,||.||). The converse seems unlikely, though we don’t know any counter
examples.

Theorem 5:  Let A be a commutative K-Banach algebra with identity, and let 3
be a subset of Mult(A, | .||) that contains Mult,,(A, | .||). Then X is pseudo-dense
in Mult(A, || .]) if and only if it satisfies ||x||s; = sup{¢(x)|p € X} for every x € A.

Corollary c:  Let A be a commutative K-Banach algebra with identity. Then A
satisfies Property (s) if and only if Mult,(A, || .||) is pseudo-dense in Mult(A, || .||).

Corollary d: Let A be a commutative K-Banach algebra with identity whose
Banach algebra norm is ||.||si.  Then Mult,(A,||.||si) is pseudo-dense in
Mult(A, |- si)-

2 Proofs of the theorems

Definitions and notations: Let D be set in K. An annnulus I'(a,r,[) is called
an empty annulus of D if it satisfies ['(a,r, )N D = 0, r = sup{|\| | A € DNd(a,r)},
and [ = inf{|\| | A € D\ d(a,l7)}.

Circular filters are defined in [1], [3], [4]. A circular filter is said to be large if
its diameter is different from zero. Large circular filters are known to characterize
the absolute values on K(z) in this way:
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For each large circular filter F on K, for each h € K(z), |h(x)| admits a limit
along F denoted by ¢z(h), and then, vz defines an absolute value on K(x), ex-
tending this of K, i.e. a multiplicative norm of K (z) [1], [3], [4]. Then, the mapping
that associates a multiplicative norm of K (x) to a large circular filter F on K, in
this way, is a bijection from the set of large circular filter F on K.

Given such a multiplicative norm ¢ of K(z), we will denote by G, the large
circular filter that defines 1. Then, each multiplicative semi-norm 1 of R(D),

either it is a norm, and then it has continuation to K(z), and is defined by a
large circular filter on K that we will denote again by Gy,

or it is not a norm, and then, there exists a € D such that ¢)(h) = |h(a)| for
every h € R(D) [1], [3], [4] and we will denote by G, the filter of neighborhoods of
the point a.

Given a € K and r > 0, we call a classic partition of d(a,r) a partition of the

form (d(bj, rj_))je[. The disks d(b;, 7; ) are called the holes of the partition.

Let P = (d(bj,rj_))je[ be a classic partition of d(a,r). An annulus I'(b, 7, 7")
included in d(a,r) will be said to be P-minorated if there exists § > 0 such that
r; > 0 for every j € I such that d(b;,r; ) C I'(b,r',r").

Given a closed bounded set E in K, we denote by E the smallest disk of the
form d(a, p) that contains E (i.e. p is the diameter of E, and a may be taken in
E). Besides, E \ F admits a unique partition of the form (d(a;, p; ))jes, such that
for each j € J, p; is the distance from a; to E. Then each disk d(ay, p; ) is called
a hole of E. A closed infraconnected set E included in d(a,r), will be said to be a
P-set if E = d(a,r), and if every hole of E is a hole of P.

For each j € I, we denote by F; the circular filter of center b; and diameter r;,
and for every h € K(x) we put ||h|lp = sup ¢z, (h). Then, by [8] we know that || . |»

jel

is a semi-multiplicative norm of K-algebra on K (z).
Next, H(P) will denote the completion of K (z) for this norm. Hence H(P) is a
K-Banach algebra provided with a semi-multiplicative norm.

Let F' be an algebraically closed field, let A be a F-algebra, let t € A, and let
7 be the ideal of the G(X) € F[X] such that G(t) = 0. If Z = {0}, we call 0 the
minimal polynomial of t. 1If T # {0}, we call minimal polynomial of t the unique
monic polynomial that generates Z. Lemma 1 is given in [8]:

Lemma 1:  Let P be a classic partition of a disk d(a,r), and let E be a P-set.
Then we have ||h||g = ||h||p for every h € R(E).

Corollary:  Let P be a classic partition of a disk d(a,r), and let E be a P-set.
Then H(E) is isometrically isomorphic to a K-subalgebra of H(P).

Henceforth, given a classic partition P of a disk d(a,r), and a P-set E, we will
consider H(E) as a K-subalgebra of H(P).

Lemma 2: Let A be a K-algebra with identity and let t € A. There exists a
homomorphism © from R(s(t)) into A such that ©(P) = P(t) for all P € Klz].
Moreover, © is injective if and only if t has a null minimal polynomial. Besides, for
every h € R(s(t)), we have s(h(t)) = h(s(t)).
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Proof: ~ Let D = s(t). We may obviously define © from K[z] to A as ©(P) = P(t).
Now let @) € K[z] have its zeros in K \ D. Then Q(t) is invertible in A, so we may
extend to R(D) the definition of ©, as @(g) = P(t)Q(t)", for all rational function
g € R(D) (with (P,Q) = 1). Next, Ker(©) is an ideal of R(D) which is obviously
generated by a polynomial G. Then G = 0 if and only if £ has a null minimal
polynomial.

Now, let h = g € R(s(t)), (with (P,Q) = 1). Let A € s(t)), and let y be
a homomorphism from A onto a field extension of K such that x(t) = A. It is
easily seen that h(s(t)) C s(h(t)), because x(h(t)) = h(N). Now, let p € s(h(t)),
let 7 a homomorphism from A onto a field extension of K such that 7(h(t)) = u,
and let o = 7(t). Then, we have 7(P(t)) — pr(Q(t)) = 0, hence o is a zero of the
polynomial P(X) — ocQ(X), and therefore, o lies in K (because K is algebraically

closed). But then, as ¢t — o belongs to the kernel of 7, o does lie in s(t). Hence we
have s(h(t)) = h(s(t)).

Remark: When the homomorphism © in Lemma 2 is injective, the K-subalgebra
B = ©(R(D)) is isomorphic to R(D), and in fact is the full subalgebra generated
by ¢ in A. So, in such a case, we may consider R(D) as a K-subalgebra of A.

By results of [1], [4], also given in [3], we have Lemma 3.

Lemma 3: Let A be a commutative K-Banach algebra with identity and let
t € A have a null minimal polynomial. Let a € K, let ¢ € Mult(A,||.]]), let ¥ be
the restriction of ¢ to R(s(t)), and let r = ¢ (t —a). Then Gy is secant with C(a, ).

Proposition A: Let A be a commutative K-Banach algebra with identity. Let
t € A be such that the mapping © from K|x] into A defined as ©O(P) = P(t) is
injective. Let a € K\ s(t), and let r = ||(t—a)~'||;;*. There exists € Mult(A,||.|))
whose restriction to R(s(t)) has a circular filter secant with C(a,r).

Proof:  We consider R(s(t)) as a K-subalgebra of A. For all ¢ € Mult(A,||.])
we denote by ¢ the restriction of ¢ to R(s(t)). Let ¢ € Mult(A, | .[|). If G5 is
secant with a disk d(a, p) for some p €]0, r[, then clearly we have ¥ (t —a) < p hence
1 1
Y((t —a)™') > = and therefore ||(t — a)~!||; > — which contradicts the hypothesis.
T T
So G is secant with K\ d(a,r7).
Suppose that there exists p > 7 such that, for every ¢ € Mult(A,| .||), Gy is
not secant with d(a, p). Clearly we have ¢(t — a) > p for all ¢ € Mult(A,|.])

and therefore ||(t — a)™!||; < —. As a consequence, for each n € N* we can find
r

1
U € Mult(A,|[.]|) such that G is secant with d(a,r + —), and since it is also
n n

secant with K \ d(a,r™), finally, it is secant with I'(a, 7,7 + +). Since Mult(A, | .||)
is compact [6], we can extract from the sequence (1,)nen a subsequence (1n, )qen)
which converges in Mult(A,|.||). So, without loss of generality, we may directly
assume that the sequence is convergent. Let 6 be its limit. For each n € N*, Q% is

1 -
secant with a circle C'(a,r,) with r < r, <r+ —. But putting s, = ¢¥,(t — a), by

n
lemma 3, it is secant with C'(a, s,,). Suppose s,, # r,,. Clearly Qan may not be secant
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with both C(a,r,) and C(a, s,). Hence we have ¢,(t — a) = r,. Since limr, = r,

we have 0(t — a) = r, hence by Lemma 3, G is secant with C'(a, ). This completes
the proof.

Notations and definitions: Let A be a K- normed algebra, and suppose that
an element € A has a null minimimal polynomial and is such that s(z) admits an
empty annulus I'(a,r,{). Such an empty annulus is said to be z-cleaved if for every
', €] 1], with ' < r”, there exists ¢ € Mult(A,]| . ||), such that the circular
filter of the restriction of ¥ to R(s(z)) is secant with I'(a, ', r").

Let A be a commutative K-Banach algebra with identity. Let ¢t € A be such that
the mapping O from Klz| into A defined as ©(P) = P(t) is injective. Let a € s(t),
1
and let r = ||(t — a)||si. For each b € d(a,r) \ s(t) we put r, = m Ay =d(b,ry).
b
By Lemma 3.1 of [2], we know that if ¢ € A, then A, = A, For every b € d(a,r)\s(t),
we denote by 1, the element of Mult(R(D)) whose circular filter has center b and

diameter 1, so 1y, satisfies ¥, (h) = - lim lim |h(z)| Vh € R(D).
For every h € R(D)), we put ||kl = maX(HhHD, sup{¢w(h)| b€ d(a,r) \ s(t)}).

As the Ay form a partition of d(a,r) \ s(t), by [8], and Proposition 3.3 of [2], we
have Proposition B:

Proposition B: Let A be a commutative K-Banach algebra with identity. Let
t € A be such that the mapping © from K[x] into A defined as O(P) = P(t) is
injective. Let a € K, and let r = |[(t — a)||si- Then || . ||: defines on R(s(t)) a
semi-multiplicative norm satisfying ||h|le > ||h(t)||si for every h € R(s(t)).

Proposition C:  Let P be a classic partition of a disk d(a,r), let T'(b,r",r") be
a P-minorated annulus included in d(a,r), let | €|r',7"[. There exist a P-set E
containing d(b,r'~) U K \ d(b,r"") together with elements f, g € H(E) such that
|f(z)|=1 for all x € K\d(b,7"") and f(z) =0 for allx € d(b,l)NE, and g(z) =0
for all x € E\ d(b,1), and |g(z)| =1 for all x € d(b,r").

Proof:  Let (rn)nen, (Sn)nen be sequences in | K| satisfying r” > r, > r,41 > [, for

alln € N, 1’ < s, < spy1 <, hmrn_hmsn—land H——Hsn—O
nO”

For each n € N, let b, € C(b,1,), ¢ € C(b,syn), let T, be a hole of P that
contains b, and let V,, be a hole of P that contains ¢,. Then we set E = d(a,r) \

((UT) (UV )> Since T'(b,r’,r") is P-minorated, there exists p > 0 such

that dzam(T) > p and diam(V,) > p for all n € N. Therefore, thanks to (1)
and Proposition 36.6 in [3], the sequence (T}, 1)nen is a decreasing idempotent 7'-
sequence of E, of center b and diameter [, and the sequence (V},, 1),en is an increasing
idempotent T-sequence of F, of center b and diameter [. Hence by Proposition 45.3
n [3], there exists f € H(F), strictly vanishing along the decreasing T-filter of
center b and diameter [, satisfying further |f(z)| = 1 for all z € D \ d(b,7""), and
f(z) = 0 for all z € d(b,l). In the same way, exists g € H(F), strictly vanishing
along the increasing T-filter of center b and diameter [, satisfying further |g(z)| =1
for all x € d(b,r""), and g(z) = 0 for all z € D\ d(b,17).
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Proof of Theorem 1:  Suppose that there exists ¢ € A such that ||t|l, < ||t]|s,
(resp. such that sup{|z| | z € s(t)} < ||t]s)-
By Lemma 2 there exists a K-algebra homomorphism © from R(D) into A such
that ©(P) = P(t) for all P € K|z]. Let B = O(R(D)).
First we suppose that Ker(©) # {0}, and therefore is an ideal of R(D) gen-
q

erated by a monic polynomial G(z) = [](z — a;). Since G(t) = 0, for every

i=1
W € Mult(A,||.]|) we have ¥(G(t)) = 0, hence there exists (1)) € {1,...,q} such
that ¢ (t —aiy)) = 0, hence ¢ (t) = |ayy)|. Then t —ayy) lies in Ker(1) and therefore
belongs to a maximal ideal M of A. But there exists 6, € Mult,,(A, || .||) such that
Ker(6y) = M (Theorem 1.16 of [3]). Hence we have 0y (t) = |ayy)| = ¥(t). Thus
we have shown that ¢ (t) < ||t]|,,. But this is true for all v» € Mult(A,|.]||). So, as
the norm || . || of Ais || . ||si, we have [|t]] < ||¢||, and therefore ||t|| = ||||,. Besides,
we notice that Ker(©) admits a generator G(z) € K[x] whose zeros lie in s(t). If
deg(G) = 1, then t lies in K (considered as a K-subalgebra of A), and obviously we
have ¥ (t) = |t| Vb € Mult(A, ] . ||), and therefore, this contradicts the hypothesis
that there exists ¢ € A such that sup{|z| | = € s(t)} < ||t||s;. Next, if deg(G) > 1,
then Ker(O) is not prime, hence A contains divisors of zero, so this case does not
concern the second statement.

Now we suppose Ker(©) = {0}. Hence B is isomorphic to R(D). Furthermore,
by Proposition B, once R(D) is provided with the norm | . ||;, © is continuous.
Therefore, denoting by H(s(t),| . ||+) the completion of R(D) with respect to || . ||,
© has continuation to a continuous homomorphism ©’ from H(s(t), || . [|;) into the
closure B of B in A. For each ¢ € Mult(A, || .||) we denote by ¢ the restriction of ¢
to B, and by G,, the circular filter of . We put r = ||t||s; and 7 = sup{|z| | = € s(¢)},
and let r' = ||t]|,,. We will suppose " < r,(resp. " < r).

Let W = d(0,7), and let s’ €]’ 7], (resp. and let s” €]r’,r[). Let W' = d(0, s')
(resp. let W = d(0,s"”)). And for each o« € W\ W' (resp. « € W\ W" ) we put

Ta = Hlia and Aa = d(Oé,'I";). SO, (AOé>OéEW\W/ (I'eSp. (AOé)OéEW\W” is a partition
= (6%

T (vesp. T") of W\ W' (resp. W\ W").

Let a € s(t). In particular, the annulus I'(a, s’,7), (resp. I'(a,s”,r)) admits
a partition by a subfamily S of 7’ (resp. of 7”). Hence by [8], I'(a, s, ), (resp.
['(a,s”,r)) contains a P-minorated annulus I'(b, p, o). Of course, we may choose o
as close as we want to p. Then, if [a — b|] > p, we take o €]p, |a — b|[. Next, we take
A €]p,o[. Clearly b does not lie in s(t), hence we may apply Proposition A to b and
to the circle C(b, 7). So, there exists 1 € Mult(A, | . ||) such that G, is secant
with C(b, 7). In fact, by definition, we have 7, < p, hence C(b, 1) is included in
d(b, p), hence G, is secant with d(b, p). On the other hand, there certainly exists
vy € Mult(A,] . ||) such that G, is secant with C(a,r). Then by Proposition
C there exists a P-set E containing (K \ d(b,0)) U d(b, p), together with elements
f, g € H(FE) satisfying:
|f(z)|=1for all z € K\ d(b,o), f(z) =0 for all z € d(b,\), and
lg(z)| =1 for all z € d(b, p), |g(x)] =0 for all x € K\ d(b, \).

We put f = ©'(f), and g = ©/(g). Hence, in H(E) we have fg = 0, and therefore
fg = 0. But since ¢;(f)p2(g) # 0, f, g are divizors of zero in A. Thus, if A has no
divizors of zero, then we have " = r.
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Now, suppose r’ < r.

We first assume |a—b| < p, hence d(a,r’) is included in K\ d(b, ). It is seen that for
every ¢ € Mult,,(A,] . ||), we have ¢(g) = 1, because ¢(t —a) < 7’ and therefore, g
is invertible in A. But, as we saw, G, is secant with C'(a,r), and then, p5(g) = 0,
which contradicts the property g invertible.

Finally , we assume |a — b| > p. Then we have d(a,r") C K \ d(b, \), and therefore,
f satisfies ¥(f) = 1 for all ¢ € Mult,,(4,| ), and ¢(f) = 0 for all ¢ such that
Gy is secant with d(b,\). So, f is invertible. But we have seen that the set of
€ Mult(A,|.||) such that Gy is secant with d(b, \) is not empty, and therefore,

such a 1 satisfies ¥(f) = 0, which contradicts the property f invertible. This ends
the proof of Theorem 1.

Notation: Let h € K(z). For every large circular filter on K, we put pz(h) =
limg |h(x)|. In particular, for each r > 0, we denote by F, the circular filter of
center 0, and diameter r, and we put |h|(r) = ¢px.(h) = lim  |h(x)|.

lz|—r, ||

Proof of Theorem 2: Let [ €]0,1], let D = d(0,17) and let P be the partition of
d(0,1) that consists of the disks d(a,|a|”) for a € d(0,1) and [ < |a] < 1. By
definition of circular filters, it is easily seen that, for every h € R(D), we have
|\h]lp = sup{|h|(r),| I < r < 1}. Let A be the completion of R(D) for the norm
| . |lp. By construction, A is complete for its norm || . || and is isometrically
isomorphic to a K-subalgebra of H(P). Given any P-set F containing D, it is
seen that H(E) is isometrically isomorphic to a K-subalgebra of A. More, and by
definition, the identical mapping from the normed K-algebra (R(D), ]| . ||») onto
the normed K-algebra (R(D), || . ||p) is continuous and enables us to consider A as
a K-subalgebra of H(D). Each element of Mult(R(D)),| .||p) has continuation to
an element of Mult(H (D), | .||p), and is of the form ¢z, with F a circular filter on
K secant with D [3]. In particular such a ¢x has continuation to A, and belongs to
Mult(A, | . |D-

Now, we consider a circular filter G on K that is not secant with D. First, we will

show that G is secant with a unique circle C'(0,r). Indeed, suppose it is not secant
with any circle C'(0, 7). There exists a sequence (a,)nen in K, thinner than G, such
that |a,41 — ay,| is a strictly decreasing sequence, of limit r. Let |a,| = r,. Since the
sequence |a,1 — a,| is a strictly decreasing, it is easily seen that for n great enough,
the sequence r,, is decreasing. If r,, = 7,41, clearly we have |a,, — ap 1| = ry, hence
|ami1 — am| < 1 for every m > n, and therefore a,, belongs to C(0,r,) for every
m > n, hence G is secant with C(0,r,,).
Else, the sequence (7, )nen is strictly decreasing, (for n big enough, of limit r > /),
and finally, G is the circular filter of center 0 and diameter r. So, we have proven
that, anyway, G is secant with a circle C'(0, ). Then such a circle is unique, because
a circular filter cannot be secant with two different circles of same center.

Now, we will show that ¢g belongs to Mult(R(D),| . ||) if and only if G is of
the form F,, with £ < p < 1. Indeed, let G be secant with C(0,7). If r > 1,
it is seen that a non constant polynomial P having no zero in C(0,r) satisfies
h}n|P(:c)| = |P|(r) > ||P||, hence ¢g does not belong to Mult(A,] . ||). So, we

have ¢ < r < 1. Besides, if G is not of the form F,, then it is secant with a disk
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it is seen

1
d(b, s), included in C(0,r), with s < r, and then, putting g(x) = o

1 1
that ¢g(g) > — > — = ||g]|, so ¢g does not belong to Mult(A,|| . ||). Finally, we see
s

that the only elements Mult(A, | . ||) are the oz when F is either a circular filter
secant with D or a large circular filter of the form F,, with £ < r < 1.

For every a € D, we denote by M, the set of f € A such that f(a) = 0. It
is obviously seen that the maximal ideals of codimension 1 of A are the M,, with
a € D. For all a € D, we denote by ¢, the element of Mult,,(A,| . ||) defined as
ealf) = 1£(a)].

Now, we will show that for each r €]¢, 1], the ideal J = Ker(¢s,) is a max-
imal ideal of infinite codimension of A. By Proposition C, there exists a P-set E
containing D, and f € H(E) such that ¢z (f) =0, and
(1) |f(x)]=1forall xz € D.

Now, by (1) J is included in a maximal ideal M different from M,, whenever
a € D. Hence M has infinite codimension. Further, it is the kernel of a certain
W € Mult,,(A,|| . ||). Let G be the circular filter such that ¢» = ¢g. Then, by (1)
G is not secant with D, and therefore is of the form F;, with ¢ €]¢,1]. Suppose
t < r, (resp. t > r). By Proposition C, there exists a P-set F' containing d(0, 1),
(resp. DU K \d(0,t7)), and f € H(F) such that ¢x (f) = 0, and |f(x)| = 1 for
all z € Fn (K \d0,t7)), (resp. for all x € d(0,t)), hence in particular |f|(t) = 1,
which contradicts the hypothesis f € M. So, we have t = r, and therefore J = M.

Now, it is clearly seen that Mult,,(A, | . ||) is dense in Mult(A, || . ||), because
the only elements of Mult(A, | . ||) \ Mult,,(A, | . ||) are the @z, with F a large
circular filter on K secant with D. And such a ¢r is known to be the limit of a
sequence @, , with (a,)nen a sequence thinner than F ([3], Lemma 12.2). As a
consequence, A satisfies Property (s).

Finally we shortly check that A does not satisfies Property (q) because for every
A € s(x), we have |A| < ¢, whereas ||z, = |z|(1) = 1.

In the proof of Theorem 3, we will need this basic lemma:

Lemma 4: Let F' be an algebraically closed field, and let P € F[X] be a polyno-
FIX]
P(X)F[X]
homomorphism from F|x] onto B, and let x = 6(X). If the spectrum of x is not

reduced to a singleton, then B admits non trivial idempotents.

mial of degree strictly greater than 1. Let B = let 6 be the canonical

q
Proof: Let P(X) = [[(X —a;)™, (with a; # a; Vi # j). It is known that B admits
j=1
non trivial idempotents if and only if ¢ > 1. But on the other hand, the spectrum
of x is clearly equal to {as,...a,}, so the conclusion follows.

Proof of Theorem 3:  Obviously, if A admits an idempotent u different from 0
and 1, we have s(u) = {0,1} which is not infraconnected. Now, we suppose that
A admits no non trivial idempotent, and that there exists x € A such that s(z)
is not infraconnected, and we consider an annnulus I'(a,r,!) which is an empty
annulus of s(x). Let © be the canonical homomorphism from R(s(z)) into A, and
let B = O(R(s(x))). Let P be the minimal polynomial of x. Then, B is isomorphic
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K1Y
° PX)K[X]’
Lemma 4, if P # 0, s(x) is reduced to one point, which is a contradiction with
s(x) not infraconnected. So, we may assume that the minimal polynomial of z is

null. Let b € T(a,r,1), and let ¢ = (xfiw I K(X), we put h(X) = 0
Let 0 = sup{|z| | = € s(t)}, and let 5 = |a — b]. By Lemma 2 we know that
s(t) = h(s(x)). Hence it is easily seen that we have

Since A has no non trivial idempotents, neither has B. Hence by

”
(1) o <max(—;, —). Now, since a has no non trivial idempotent, by Theorem
S

5.10 of [2], the empty annulus A is not z-cleaved, then for every e > 0, there
exists ¢, € Mult(A, ] . ||) such that the circular filter of the restriction of ¢ to

R(s(x)) is secant with I'(a, 3,3 + €). As a consequence, we have @.(t) > e
€

1 1
Now, we can choose € such that En > max(é, 7) As a consequence, we have
€
1
1t]|s; > max(é, 7), and then by (1), this is a contradiction of Property (q).

Proof of Theorem 4:  As in Proof of Theorem 2, we take [ €]0,1[ and denote by
P be the partition of d(0,1) that consists of the disks d(a,|a|”) for a € d(0,1)
and [ < |Jof < 1. Let a € C(0,1) and let D = d(0,17) Ud(a,17). It is clear
that for every h € R(D), we have ||h|lp = sup{|h|(r),l < r < 1}. Let A be the
completion of R(D) for the norm || . ||». By construction, A is complete for its norm
| . |lsi- Now, denoting by z the identical mapping on D, s(z) is equal to D, and
therefore is not infraconnected. Now, suppose that A has a non trivial idempotent
u. Since ||h||p > ||h||p for all h € R(D), A is clearly isomorphic to a subalgebra of
H(D). As a consequence, as a function in D, u is a constant equal to 0 or 1 in each
set d(0,17), and d(a,17). Without loss of generality, we may clearly assume that
u(¢) =0 V¢ € d(0,17) (because else, we consider 1 — u instead of u).

For every r € [I, 1], we denote by F, the circular filter of center 0, and diameter
r, and we put g(r) = ¢x.(u). Then g is known to be a continuous function of r that

satisfies g(l) = " lilr|ré| l|u(§)|, hence ¢g(I) = 0, and of course, g(r) = 0 or 1 for all
—,|G|<

r €]l,1]. As a consequence, we have g(r) = 0 for all » € [[,1]. So, ||ul|p = 0, and
therefore u = 0. This proves that A only has trivial idempotents. Finally, the fact

that A does not satisfy Property (q) is an obvious consequence of Theorem 3, but
x

(z =)

may also be directly cheked, just by considering any b € T'(0,7,1), and t =
and this ends the proof.

Proof of Theorem 5:  On one hand, it is obviously seen that if for every ¢ €
Mult(A, |-, f € A, and € > 0, we have V (v, f,€) N X # () then, for all x € A, we
have sup{p(z)| ¢ € £} = sup{ip(x)|p € Mult(A, || |[)} and therefore [z = [|z[|s-

On the other hand we suppose that ||z||s = ||z||s for all z € A, and that there
exists ¥ € Mult(A,].]]), t € A and € > 0 such that V(¢,t,e) NS = 0. We put
bt = 7.

First, suppose r = 0. Since ¥ D Mult,,(A, ] .||), 0 does not lie in s(¢), hence t
is invertible in A and satisfies ¥ (¢)y(t™') = 1, which contradicts ¥ (t) = 0. So we
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have r > 0. Now we can take & €]0,r[ such that |p(t) —r| > § for every ¢ € S.
J

Since Mult,,(A,||.||) C X%, it is seen that s(t) NT(0,7 —d,r+0) = 0. Let w €0, Z[’

and let a,b € K satisfy r —w < |a| <rand r+ 4§ —w < |b] < r+ . Since a lies in

['0,r — 6,7 +0), r — a is invertible in A. We put u = E;t__aﬁl and then we have
Wt —a) =1(t), (t —b) = |b], hence we have

1) v = 2,

First, we suppose ¢(t) > ¥(t) + §. Then we have p(t —a) = p(t — b) = ( ), hence
o(u) = 1, and therefore ¥ (u) — ¢(u) = | | -1> 7“—1—(5% -1 = 0~ — Since

w < g we obtain ¥ (u) — p(u) > — 0
J.

o
Now, we suppose p(t) < ¢ (t) —J. Then we have p(t —a) = |a|, ¢(t —b) = |b|, hence

t
o(u) = 90|(GT2| | and then by (1) we have

000 = () = 1 = Ay 2 (- HE

r

)
But since w < T we obtain

r—o0 ) > (7“+(5—w2)((5—2w) Z(5—2u)

1 )
— Z >
(7“—1—(5 w>(7" T r - 2r

J
Thus we have proven that ¢(u) < ¥(u) — By for every ¢ € ¥, and therefore we
r

have ||u|ls < |Jul|s;. This completes the proof of Theorem 5.
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