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Abstract
The purpose of this work is to present some results on the d-orthogonal

polynomials defined by generating functions of certain forms to be specified
below. The resulting polynomials are natural extensions of some classical
orthogonal polynomials. The first part of this study is motived by the re-
cent work of Von Bachhaus [21] who showed that, among the orthogonal
polynomials, only the Hermite and the Gegenbauer polynomials are defined
by the generating function G

[
2xt − t2

]
. Here we generalize this result in

the context of d-orthogonality, by considering the polynomials generated by
G
[
(d+1)xt−td+1

]
, where d is a positive integer. We obtain that the resulting

polynomials are d-symmetric
(
Definition 1.2

)
and “classical” in the Hahn’s

sense. We provide some examples to illustrate the results obtained and show
that they involve certain known polynomials. Finally, we conclude by giving
some properties of the zeros of these polynomials as well as a (d + 1)-order
differential equation satisfied by each polynomial. In forthcoming paper [2]
we will consider the polynomials generated by etΨ(xt).

1 Introduction and preliminary results

Let G[z] be analytic at z = 0 and has the expansion

G[z] =
∞∑
n=0

anz
n , an 6= 0 , n ≥ 0. (1.1)
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Now, let d be an arbitrary positive integer with d ≥ 1. Define the monic polynomials
Pn(.; d) , n = 0, 1, . . . , by the generating function

G
[
(d + 1)xt− td+1

]
=
∞∑
n=0

cnPn(x; d)t
n , cn 6= 0 , n ≥ 0. (1.2)

Also we put
Gd(x, t) = G

[
(d + 1)xt− td+1

]
. (1.3)

Since Pn(.; d) is monic, we have cn = (d+ 1)nan , n ≥ 0.
Without any requirements of orthogonality, Rainville [18] has studied these poly-

nomials when d = 1 and obtained that the two families of Legendre and Hermite
polynomials are contained in this class of polynomials. Later, Srivastava and oth-
ers (see, e. g. [19] and the references therein) also investigated the polynomials
gpn , n = 0, 1, . . ., known as Gould-Hopper [12] polynomials, and defined by the

generating function exp
(
pxt − tp

)
=
∑∞
n=0 g

p
n(x)t

n/n! , where p is a positive inte-
ger. He showed that these polynomials are contained in the more general class of
polynomials defined by (1.2).
Recently, when d = 1, Von Bachhaus [21] has considered the orthogonal polynomials

defined by the generating function G1(x, t) = G
[
2xt− t2

]
. He stated that

Theorem 1.1 [21] The only orthogonal polynomials generated byG1(x, t) = G
[
2xt−

t2
]

are the Hermite and the Gegenbauer polynomials.

At first, he proved that the polynomials Pn , n ≥ 0, satisfy a second-order differential
equation. Next, by comparing this differential equation with the Bochner result [3],
and after discussion of all the possible cases, he obtained the above result. Note
in passing that this result was briefly mentioned in the work of Sister Celine, see
Fasenmyer [10].

In the present paper, we investigate the d-orthogonal polynomials defined by the
generating function (1.2) and intereste in some particular cases of the polynomials
obtained and certain of their interesting properties. First of all, we give an alterna-
tive way of obtaining the Von Bachhaus result and next we consider the following
problem:
(P): Find all d-orthogonal polynomials defined by the generating function Gd(x, t) =

G
[
(d+ 1)xt− td+1

]
.

The main result obtained here is the following:

Theorem 1.2 The only d-orthogonal polynomials generated by (1.2) are the clas-
sical d-symmetric polynomials.

When d = 1, we rediscover the Von Bachhaus result.

The paper is divided into four sections. Following the introduction and prelim-
inaries necessary for the sequel, we give, in Section 2, another simple proof of the
Von Bachhaus Theorem based only on the use of the recurrence relation and the
Hahn’s property [13]. In Section 3, we state and solve the above problem (P) for
any integer d with d ≥ 1. Our method of solving this problem is also based only
on the recurrence relations and the use of Hahn’s property. We obtain that the re-
sulting polynomials are the classical d-symmetric polynomials and show that there
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are 2d solutions of this problem. Two typical families are singled out. The first is
the Hermite type polynomials and the second is the ultraspherical type polynomi-
als. Finally, we conclude the paper by giving, in Section 4, some properties of the
polynomials obtained.

Before discussing the above problem, let us recall some preliminary results which
we need below. Throughout this paper, we assume that {Pn}n≥0 is a sequence of

monic polynomials
(
Pn(x) = xn + . . .

)
and {un}n≥0 its dual sequence defined by〈

un, Pm
〉

= δn,m ;n,m ≥ 0, where
〈
,
〉

are the duality brackets between the vector
space of polynomials with complex coefficients and its dual.

Definition 1.1 The polynomial sequence {Pn}n≥0 is called a d-orthogonal polyno-
mial sequence (d-OPS) with respect to the d-dimensional functional UU = t(u0, . . . ,
ud−1) if it fulfils [15, 20]

〈
uk , PmPn

〉
= 0 , m ≥ dn+ k + 1, n ≥ 0,〈

uk , PnPdn+k

〉
6= 0 , n ≥ 0,

(1.4)

for each integer k with k = 0, 1, . . . , d − 1.

Note that, when d = 1, we meet again the ordinary regular orthogonality. In this
case, {Pn}n≥0 is an orthogonal polynomial sequence (OPS).

The remarkable characterization of the d-OPS is that they satisfy a (d+1)-order
recurrence relation [20] which we write in the form

Pm+d+1(x) = (x− βm+d)Pm+d(x)−
d−1∑
ν=0

γd−1−ν
m+d−νPm+d−1−ν (x) , m ≥ 0, (1.5)

with the initial conditionsP0(x) = 1 , P1(x) = x− β0 and if d ≥ 2 :

Pn(x) = (x− βn−1)Pn−1(x)−
∑n−2
ν=0 γ

d−1−ν
n−1−νPn−2−ν(x) , 2 ≤ n ≤ d,

(1.6)

and the regularity conditions

γ0
n+1 6= 0 , n ≥ 0. (1.7)

When d = 1, the recurrence (1.5) with (1.6) is reducible to the well-known second-
order recurrence relationPn+2(x) = (x− βn+1)Pn+1(x)− γn+1Pn(x), n ≥ 0 ;

P0(x) = 1, P1(x) = x− β0.
(1.8)

Now, let {Qn}n≥0 be the sequence of the monic derivatives defined by Qn(x) :=
(n + 1)−1P ′n+1(x) , n ≥ 0. According to the Hahn’s property [13], if the sequence
{Qn}n≥0 is also d-orthogonal, the sequence {Pn}n≥0 is called “classical” d-OPS. In
this case {Qn}n≥0 also satisfies a (d + 1)-order recurrence relation

Qm+d+1(x) = (x− β̃m+d)Qm+d(x)−
d−1∑
ν=0

γ̃d−1−ν
m+d−νQm+d−1−ν(x) , m ≥ 0, (1.9)
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with the initial and the regularity conditions
Q0(x) = 1 , Q1(x) = x− β̃0 and if d ≥ 2 :

Qn(x) = (x− β̃n−1)Qn−1(x)−
∑n−2
ν=0 γ̃

d−1−ν
n−1−νQn−2−ν(x) , 2 ≤ n ≤ d,

γ̃0
m+1 6= 0 , m ≥ 0

(1.10)

and it is d-orthogonal with respect to VV = t(v0, . . . , vd−1), where {vn}n≥0 is the
dual sequence of {Qn}n≥0.

Finally, we will also recall the notion of d-symmetric polynomials. Let ω =
exp

(
2iπ/(d + 1)

)
and k be an integer with 0 ≤ k ≤ d. By ξk ; k = 0, 1, . . . , d, we

denote the d+ 1 roots of unity, namely ξk = ωk = exp
(
2ikπ/(d+ 1)

)
.

Definition 1.2 [6] The sequence {Pn}n≥0 is called d-symmetric if it fulfils

Pn(ωx) = ωnPn(x) , n ≥ 0, (1.11)

or, equivalently,

Pn(ξkx) = ξnkPn(x) ; k = 0, 1, . . . , d ; n ≥ 0. (1.12)

When d = 1, then ω = −1, this means that the sequence {Pn}n≥0 is symmetric,
that is to say Pn(−x) = (−1)nPn(x), n ≥ 0.

Theorem 1.3 [6] Let {Pn}n≥0 be a sequence of d-orthogonal polynomials with
respect to the d-dimensional functional U = t(u0, . . . , ud−1). Then the following
statements are equivalent:

(a) {Pn}n≥0 is d-symmetric.
(b) {Pn}n≥0 satisfies the (d+1)-order recurrence relationPn+d+1(x) = xPn+d(x)− γ0

n+1 Pn(x) , (γ0
n+1 6= 0), n ≥ 0,

Pn(x) = xn , 0 ≤ n ≤ d.
(1.13)

In the other words, βn = 0, n ≥ 0 and γνn+1 = 0, n ≥ 0 for ν = 1, . . . , d − 1.
(c) For each integer j with 0 ≤ j ≤ d − 1, the moments of the linear functional

uj satisfy

(uj)(d+1)n+i = 0 ; i = 0, 1, . . . , d ; i 6= j , n ≥ 0. (1.14)(
In this case the d-dimensional functional U is called d-symmetric

)
.

This Theorem generalizes the well-known result about the symmetric orthogonal
polynomials (see, e.g. [4]).
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2 Another proof of Von Bachhaus Theorem

Throught this section, we use the notation Pn(x) = Pn(x; 1) adopted by Von Bach-
haus. First, we give the two following fundamental lemmas:

Lemma 2.1 [18] If the sequence {Pn}n≥0 is defined byG
[
2xt−t2

]
=
∑
n≥0 cnPn(x)t

n,
then it satisfies

ncnPn(x) + cn−1P
′
n−1(x)− cnxP ′n(x) = 0, n ≥ 1. (2.1)

Lemma 2.2 If {Pn}n≥0 is defined by G
[
2xt − t2

]
=
∑
n≥0 cnPn(x)t

n, then it is a
symmetric sequence.

Proof of Lemma 2.2 From G1(x, t) = G
[
2xt − t2

]
, it is easily verified that

G1(−x,−t) = G1(x, t). Then, using these changes in the right-hand sides, we get∑
n≥0

cnPn(−x)(−1)ntn =
∑
n≥0

cnPn(x)t
n.

By comparing the coefficients of tn, we obtain

Pn(−x) = (−1)nPn(x), n ≥ 0.

Then {Pn}n≥0 is symmetric.
This result may be also obtained by the use of the identity G1(−x, t) = G1(x,−t).

�

Now, we suppose that {Pn}n≥0 is an OPS. From the symmetry property, we deduce
that the sequence {Pn}n≥0 satisfies the second-order recurrence relationPn+2(x) = xPn+1(x)− γn+1Pn(x), n ≥ 0 ;

(
γn+1 6= 0 , n ≥ 0

)
,

P0(x) = 1, P1(x) = x.
(2.2)

Therefore, to prove the Bachhaus result it suffices to show that {Pn}n≥0 is classical,
that is to say, the sequence {Qn}n≥0 is also orthogonal.

Proof of Theorem 1.1. Indeed, from (2.1), changing n by n+ 1, we get

Pn+1(x) = xQn(x)−
ncn

(n+ 1)cn+1
Qn−1(x), n ≥ 0, (2.3)

where Qn = (n+ 1)−1P ′n+1, n = 0, 1, . . . , Q−1 = 0.
Otherwise, by differentiating (2.2), we have

Pn+1(x) = (n+ 2)Qn+1(x) + nγn+1Qn−1(x)− (n+ 1)xQn(x), n ≥ 0. (2.4)

Substituting for Pn+1 from (2.3) into (2.4) yieldsQn+2(x) = xQn+1(x)− γ̃n+1Qn(x), n ≥ 0;

Q0(x) = 1, Q1(x) = x,
(2.5)
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where

γ̃n+1 =
n + 1

n + 3

[
γn+2 +

cn+1

(n+ 2)cn+2

]
, n ≥ 0. (2.6)

Thus, the sequence {Qn}n≥0 is also orthogonal and then, by virtue of Hahn’s prop-
erty, {Pn}n≥0 is classical. Because of the symmetry property, it is clear that only
the Hermite and Gegenbauer (ultraspherical) polynomials are among the resulting
polynomials. �

Remark 2.1. The coefficients γ̃n+1 defined by (2.6) are not zero for all n ≥ 0. Indeed,
this contradicts the regularity conditions (1.7). See Remark 3.1. below.

3 Generalization of the above result in the d-orthogonality case

In this section, we make similar investigations by considering the analogous problem:
(P): Find all d-orthogonal polynomials defined by the generating function (1.2).
We first need the two fundamental lemmas:

Lemma 3.1 If {Pn(.; d)}n≥0 is defined by G
[
(d+1)xt− td+1

]
=
∑∞
n=0 cnPn(x; d)t

n

then it is a d-symmetric sequence.

Proof. Indeed, from Gd(x, t) = G
[
(d + 1)xt− td+1

]
, it is easily verified that

Gd(ωx, t) = Gd(x, ωt).

Make the same changes of the two variables x and t in the right-hand side of (1.2),
we get ∑

n≥0

cnPn(ωx; d)t
n =

∑
n≥0

cnPn(x; d)ω
ntn.

By identification we obtain that

Pn(ωx; d) = ωnPn(x; d), n ≥ 0.

Then {Pn(.; d)}n≥0 is d-symmetric. �

Lemma 3.2 If the sequence {Pn(.; d)}n≥0 is defined by (1.2) , then it satisfies

Pn+d+1(x; d) = xQn+d(x; d)−
(n+ 1)cn+1

(n+ d+ 1)cn+d+1
Qn(x; d), n ≥ 0,

Pn+1(x; d) = xQn(x; d), n = 0, 1, . . . , d− 1. (3.1)

Proof. By differentiating the generating function (1.2) with respect to t and x, we
easily obtain the following partial differential equation:

t
∂Gd

∂t
− (x− td)∂Gd

∂x
= 0. (3.2)
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Now, using the right-member of (1.2), we have

∂Gd

∂t
=
∑
n≥0

(n+ 1)cn+1Pn+1(x; d)t
n, (3.3)

and
∂Gd

∂x
=
∑
n≥0

cn+1P
′
n+1(x; d)t

n+1 =
∑
n≥0

(n+ 1)cn+1Qn(x; d)t
n+1. (3.4)

Substituting (3.3) and (3.4) into (1.2), we obtain

∑
n≥0

cn+1Pn+1(x; d)t
n+1 = (x− td)

∑
n≥0

(n+ 1)cn+1Qn(x; d)t
n+1

=
∑
n≥0

(n+ 1)cn+1xQn(x; d)t
n+1 −

∑
n≥d

(n− d+ 1)cn−d+1Qn−d(x; d)t
n+1. (3.5)

By comparing the coefficients of tn and shifting indices the relation (3.1) follows
immediatly. �

Now, we return to our problem and prove the main result.

Proof of Theorem 1.2. As the sequence {Pn(.; d)}n≥0 is also d-OPS, according to
Lemma 3.1.and Theorem 1.3., it satisfies the recurrence relationPn+d+1(x; d) = xPn+d(x; d)− γ0

n+1 Pn(x; d) , n ≥ 0,

Pn(x; d) = xn , 0 ≤ n ≤ d,
(3.6)

with the regularity conditions (1.7).
Now, by differentiating (3.6) and shifting indices, we obtain

Pn+d+1(x; d) = (n + d+ 2)Qn+d+1(x; d) + (n+ 1)γ0
n+2Qn(x; d)

− (n + d+ 1)xQn+d(x; d), n ≥ 0. (3.7)

From (3.1) and (3.7), we obtain that the sequence {Qn(.; d)}n≥0 also satisfies the
following (d+ 1)-order recurrence relation:Qn+d+1(x; d) = xQn+d(x; d)− γ̃0

n+1Qn(x; d) , n ≥ 0,

Qn(x; d) = xn , 0 ≤ n ≤ d,
(3.8)

where

γ̃0
n+1 =

n+ 1

n+ d + 2

[
γ0
n+2 +

cn+1

(n+ d+ 1)cn+d+1

]
, n ≥ 0. (3.9)

Clearly, the sequence {Qn(.; d)}n≥0 also form a d-OPS and then {Pn(.; d)}n≥0 is
“classical” in the Hahn’s sense.
As shown below, the coefficients γ̃0

n+1 , n ≥ 0, are not zero, because this contradicts
the regularity conditions (1.7). �

In the sequel, we will determine all the solutions of our problem. We start by
giving and solving the system satisfied by the coefficients γ0

n+1 and γ̃0
n+1 , n ≥ 0.
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From (3.7) and (3.8) we obtain

Pn+d+1(x; d) = Qn+d+1(x; d)+
(
(n+1)γ0

n+2−(n+d+1)γ̃0
n+1

)
Qn(x; d), n ≥ 0. (3.10)

Next, from the last and the recurrence relations satisfied by {Pn(.; d)}n≥0 and
{Qn(.; d)}n≥0 and after some calculations, we obtain that the coefficients γ0

n+1 and
γ̃0
n+1 fulfill the following system:

(n+ d+ 2)γ̃0
n+1 = (n+ d)γ̃0

n + (n+ 1)γ0
n+2 − (n− 1)γ0

n+1 , n ≥ 1, (3.11)

(d+ 2)γ̃0
1 = γ0

2 + γ0
1 , (3.12)

(n + 2d)γ̃0
n+d γ̃

0
n = 2(n + d)γ0

n+d+1γ̃
0
n − nγ0

n+d+1γ
0
n+1 , n ≥ 1. (3.13)

Remark 3.1. By virtue of (3.13) and the regularity conditions (1.7), it is clear that
γ̃0
n+1 6= 0 , n ≥ 0. Indeed, if γ̃0

n0
= 0 for n0 ≥ 1, then γ0

n0+d+1γ
0
n0+1 = 0, which is

contradictory.

To solve this system, we pose:

γ̃0
n = γ0

n+1

n

n+ d
ϑn , ϑn 6= 0 , n ≥ 1. (3.14)

Thus, substituting for γ̃0
n from (3.14) into (3.11)-(3.13), the above system becomes

(n+ 1)
[
(n+ d + 2)(ϑn+1 − 1) + 1

]
γ0
n+2 = (n+ d+ 1)

[
n(ϑn − 1) + 1

]
γ0
n+1 , n ≥ 1,

(3.15)[
(d+ 2)(ϑ1 − 1) + 1

]
γ0

2 = (d+ 1)γ0
1 , (3.16)

ϑn+d +
1

ϑn
= 2 , n ≥ 1. (3.17)

The Riccati equation (3.17) plays an important role in the solution of the above

system. Indeed, for k fixed
(
k = 0, 1, . . . , d − 1

)
, by replacing n with dn + k, the

last equation becomes

ϑd(n+1)+k +
1

ϑdn+k
= 2 , n ≥ 0

(
with n 6= 0 if k = 0

)
. (3.18)

Thus, for each k, it is easy verified that this equation has the following solutions:1 , n ≥ 0;

ϑdn+k = n+λk+1
n+λk

, n ≥ 0,

(
n 6= 0 if k = 0

)
(3.19)

where λk are d arbitrary parameters with λ0 6= −1,−2, . . . and λk 6= 0,−1,−2, . . .
for k = 1, 2, . . . , d− 1.
Thus, Eq. (3.18) has exactly 2d solutions denoted Sd,i , i = 1, . . . , 2d. Each solution
Sd,i is in fact a d-uplet of the solutions (3.19) of the form:(

ϑdn, ϑdn+1, . . . , ϑdn+d−1

)
.
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In the sequel, we adopt the following classification of the solutions Sd,i:
Sd,i : ϑdn ϑdn+1 ϑdn+2 . . . ϑdn+d−2 ϑdn+d−1

Sd,1 : 1 1 1 . . . 1 1

Sd,2 : 1 1 1 . . . 1 n+λd−1+1
n+λd−1

Sd,3 : 1 1 1 . . . n+λd−2+1

n+λd−2
1

...
...

...
... . . .

...
...

Sd,2d−1 : n+λ0+1
n+λ0

n+λ1+1
n+λ1

n+λ2+1
n+λ2

. . . n+λd−2+1
n+λd−2

1

Sd,2d : n+λ0+1
n+λ0

n+λ1+1
n+λ1

n+λ2+1
n+λ2

. . .
n+λd−2+1

n+λd−2

n+λd−1+1

n+λd−1

Table 1.

Consequently, we have 2d families of the classical d-OPS defined by the generating
function (1.2).

For instance, when d = 1, d = 2 and d = 3, we have, respectively,

• For d = 1 : i = 1, 2 and k = 0. Then Eq.(3.18) has two (21) solutions:

S1,i : ϑn (n ≥ 1)

S1,1 : 1

S1,2 :
n+ λ0 + 1

n+ λ0

Table 2.

In this case, we rediscover with the above solutions S1,1 and S1,2, respectively, the
two families of Hermite and Gegenbauer polynomials where λ0 → α + 1/2 in the
second case. That is the Von Bachhaus result.
• For d = 2 : i = 1, . . . , 4 and k = 0, 1. Then Eq.(3.18) has four (22) solutions

[6]:

S2,i : ϑ2n (n ≥ 1) ϑ2n+1 (n ≥ 0)

S2,1 : 1 1

S2,2 : 1 n+λ1+1
n+λ1

S2,3 : n+λ0+1
n+λ0

1

S2,4 : n+λ0+1
n+λ0

n+λ1+1
n+λ1

Table 3.
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• For d = 3 : i = 1, . . . , 8 and k = 0, 1, 2. Then Eq.(3.18) has eight (23)
solutions:

S3,i : ϑ3n (n ≥ 1) ϑ3n+1 (n ≥ 0) ϑ3n+2 (n ≥ 0)

S3,1 : 1 1 1

S3,2 : 1 1 n+λ2+1
n+λ2

S3,3 : 1 n+λ1+1
n+λ1

1

S3,4 : 1 n+λ1+1
n+λ1

n+λ2+1
n+λ2

S3,5 : n+λ0+1
n+λ0

1 1

S3,6 : n+λ0+1
n+λ0

1 n+λ2+1
n+λ2

S3,7 : n+λ0+1
n+λ0

n+λ1+1
n+λ1

1

S3,8 : n+λ0+1
n+λ0

n+λ1+1
n+λ1

n+λ2+1
n+λ2

Table 4.

Now, from (3.15) and taking (3.16) into account, we obtain that
γ0
n+2 = γ0

1

n+ d+ 1

d

∏n
j=0 Θj , n ≥ 0,

γ̃0
n+1 = γ0

1

n+ d

d

∏n+1
j=0 Θj , n ≥ 0,

(3.20)

where

Θj =


j(ϑj−1)+1

(j+d+2)(ϑj+1−1)+1
, j = 1, 2, . . . ,

1
(d+2)(ϑ1−1)+1

, j = 0.
(3.21)

In general, by virtue of the solutions (3.19), to compute the coefficients γ0
n and γ̃0

n ,
we need shift the indices as follows n→ nd + k. Then (3.20) yields

γ0
dn+k+2 = γ0

1

d(n+ 1) + k + 1

d

∏dn+k
j=0 Θj , k = 0, 1, . . . , d− 1 ; n ≥ 0,

γ̃0
dn+k+1 = γ0

1

d(n+ 1) + k

d

∏dn+k+1
j=0 Θj , k = 0, 1, . . . , d− 1 ; n ≥ 0.

(3.22)

�

3.1 Examples

Among all the solutions of the system (3.11)-(3.13), we now restrict our attention
to the following two typical examples obtained with the two solutions Sd,1 and Sd,2d:
Example 1. We consider the evident solution Sd,1 of the Riccati equation (3.17),
that is to say, ϑdn+k = 1, for all indices. In this case we simply write ϑn = 1 , n ≥ 1.
Thus, from (3.21), we easily obtain that Θn = 1 , n ≥ 0 and from (3.20) we have

γ0
n+1 = γ̃0

n+1 = γ0
1

(
n+ d
d

)
, n ≥ 0. (3.23)



On the Classical d-Orthogonal Polynomials 117

Therefore Qn = Bn , n ≥ 0, and then {Bn}n≥0 is at the same time d-orthogonal
and Appell sequence.

These polynomials are the d-symmetric ones of the family of polynomials recently
obtained in the context of d-orthogonality by the second author in [5] and for d = 2
in [6]. They are called the d-orthogonal polynomials of Hermite type. Otherwise,
these polynomials were studied in different contexts by several authors (see, e.g.,
[19]).
When d = 1, we meet again the Hermite polynomials.

Example 2. Let us now consider the solution Sd,2d of the Riccati equation (3.17).
In this case we have ϑdn+k 6= 1, for all indices, that is to say,

ϑdn+k =
n+ λk + 1

n+ λk
, n ≥ 0 , k = 0, 1, . . . , d− 1,

(
n 6= 0 if k = 0

)
and (3.21) becomes

Θdn+k =



(
n+λk+1+1

)(
(d+1)n+λk+k

)
(
n+λk

)(
(d+2)n+λk+1+k+3

) , k = 0, 1, . . . , d− 1, n ≥ 0,
(
n 6= 0 if k = 0

)
λ1

λ1+d+2
, k = n = 0.

(3.24)
Here, we are interested by a particular case of the last solution. Indeed, if we put

λk =
(d+ 1)λ + k

d
, k = 0, 1, . . . , d− 1,

we obtain that

ϑdn+k =
dn + k + (d+ 1)λ + d

dn+ k + (d + 1)λ
, n ≥ 0 , k = 0, 1, . . . , d − 1,

(
n 6= 0 if k = 0

)
,

which can be written, changing the indices dn + k → n, as

ϑn =
n+ (d+ 1)λ + d

n+ (d + 1)λ
, n ≥ 1. (3.25)

Whence (3.24) becomes

Θj =



(
(d+1)λ+j+1

)(
λ+j

)
(

(d+1)λ+j

)(
λ+d+j+1

) , j = 1, 2, . . . ,

(d+1)λ+1(
d+1

)(
λ+d+1

) , j = 0,

(3.26)

and then

n∏
j=0

Θj =

(
n+ (d+ 1)λ + 1

)(
λ+ 1

)
n(

λ + d+ 1
)
n+1

, n ≥ 0, (3.27)
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where (µ)n is Pochhammer’s symbol defined by

(µ)n =
Γ(µ + n)

Γ(µ)
=

µ(µ + 1) . . . (µ + n− 1) , n = 1, 2, . . . ,

1 , n = 0.

Then, from (3.20) we easily obtain

γ0
n+2 =

γ0
1

d + 1

(
n+ d + 1

d

)(n+ (d+ 1)λ + 1
)(
λ+ 1

)
n(

λ+ d + 1
)
n+1

, n ≥ 0 (3.28)

and

γ̃0
n+1 =

γ0
1

d+ 1

(
n+ d
d

)(n+ (d+ 1)λ + d+ 1
)(
λ + 1

)
n(

λ+ d + 1
)
n+1

, n ≥ 0. (3.29)

Now, if we put

γ =
γ0

1

(d+ 1)!

Γ(λ + d+ 1)

Γ(λ+ 1)
, (3.30)

the above identities become, respectively,

γ0
n+1 = γ

(n+ d)!
(
n+ (d+ 1)λ

)
Γ(λ + n)

n! Γ(λ + d+ n+ 1)
, n ≥ 0 (3.31)

and

γ̃0
n+1 = γ

(n + d)!
(
n+ (d + 1)(λ+ 1)

)
Γ(λ + n + 1)

n! Γ(λ + d+ n+ 2)
, n ≥ 0. (3.32)

From these, by taking into account of the dependence on the parameter λ and
putting

Pn(x; d) = Pn(x; d, λ) , n ≥ 0,

we have Qn(x; d, λ) = Pn(x; d, λ+ 1) , n ≥ 0, that is,

P ′n+1(x; d, λ) = (n+ 1)Pn(x; d, λ+ 1) , n ≥ 0. (3.33)

Furthermore, the relation (3.10) leads to

Pn+d+1(x; d, λ) =
1

n+ d+ 2
P ′n+d+2(x; d, λ) −

σn
n + 1

P ′n+1(x;λ), n ≥ 0, (3.34)

or
Pn+d+1(x; d, λ) = Pn+d+1(x; d, λ + 1)− σnPn(x; d, λ+ 1), n ≥ 0, (3.35)

where

σn = dγ
(n + d+ 1)! Γ(λ + n+ 1)

n! Γ(λ + d + n+ 2)
, n ≥ 0. (3.36)

Note that, these polynomials were first studied by Humbert [14] and later generalized
by Gould [11]. When λ = 0 and λ = 1 , we obtain, repectively, the d-orthogonal
Tchebychev polynomials studied in [7,8].
When d = 1 , γ = 1/4 and the parameter λ → α + 1/2, we obtain again the
Gegenbauer polynomials.
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4 Some properties of the polynomials given in the two exam-

ples

4.1 Explicit representation for the polynomials Pn(.; d)

We have∑
n≥0

cnPn(x; d)t
n = G

[
(d+ 1)xt− td+1

]
=
∑
n≥0

an
(
(d+ 1)xt− td+1

)n
=
∑
n≥0

an
n∑
p=0

(−1)p
(
n
p

)(
(d+ 1)xt

)n−p
t(d+1)p

=
∑
n≥0

[ n
d+1

]∑
p=0

(−1)pan−dp

(
n− dp
p

)(
(d+ 1)x

)n−(d+1)p
tn,

where [ n
d+1

] denotes the integer part of n
d+1

.
Now, comparing the coefficients of tn, we get

Pn(x; d) =
1

cn

[ n
d+1

]∑
p=0

(−1)pan−dp

(
n− dp
p

) (
(d + 1)x

)n−(d+1)p
. (4.1)

Recall that cn = (d+ 1)n an , n ≥ 0.
Note that for two special values of an the resulting polynomials are known:
• for G[z] = ez, then an = 1/n!, we have the Gould-Hopper polynomials;
• for G[z] = (1 − z)−α, α /∈ N, then an = (α)n/n!, we obtain the Humbert

polynomials.

4.2 Zeros of the polynomials Pn(.; d)

From the recurrence relation (1.13), we easily state the following properties:

P1- (d + 1) consecutive polynomials do not vanish simultaneously.
Also, using the recurrence relation (1.13) to construct, for n > d , the following

system:−xPr−1(x; d) + Pr(x; d) = 0, for 1 ≤ r ≤ d;

γ0
r−dPr−d−1(x; d)− xPr−1(x; d) + Pr(x; d) = 0, for d+ 1 ≤ r ≤ n.

(4.2)

If x0 is a zero of Pn(x; d), then the above system can be viewed as an homogeneous
linear system which unknowns are Pr(x0; d) ; 0 ≤ r ≤ n − 1. The determinant of
this system is null since, otherwise, P0(x0; d) = 0.
Thus, it is readily verified that the system (4.2) can be also written in the matrix
equation as

xPP = AAPP , (4.3)

where
PP = t

(
P0, P1, P2, . . . Pn−1

)
,
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and AA =
(
aij
)

is the n-square matrix given by

aij =


1 , for 1 ≤ i ≤ n− 1 , j = i+ 1;

γ0
j , for 1 ≤ j ≤ n− 1 , i = d + j;

0 , otherwise.

(4.4)

This leads us to state:
P2 - The zeros of Pn(x; d) , n > d, are the eigenvalues of the matrix AA.

Numereous papers in the literature dealt with the properties of the eingenvalues of
a square matrix (see, e.g., [9,17]). As a consequence of the Gerchgorin’s Theorem
[17, p.51], for instance, we can locate the zeros of Pn(x; d) in the disk D(0, ρn) where

ρn = sup
1≤j≤n−d

(
1 + |γ0

j |
)
.

Other properties of the zeros of Pn(x; d) may be deduced from the explicit expression

(4.1)
(
or from the d-symmetry property

)
:

P3 - If x0 is a zero of Pn(x; d), then ξkx0 , k = 0, 1, . . . , d, are also zeros of
Pn(x; d).

P4 - It is easy verified that 0 is a zero of P(d+1)n+k(x; d) of multiplicity k.

4.3 A (d + 1)-order differential equation

Theorem 4.1 Let {Pn(.; d)}n≥0 be the polynomials sequence generated by (1.2).
If {Pn(.; d)}n≥0 is d-OPS, then the polynomial Pn(.; d) , n = 0, 1, . . . , satisfy the
following (d+ 1)-order differential equation:

[
Dd+1− cn

cn−d

(
xD−n

) d−1∏
j=0

(
An−1−j

(
xD−n+ d+1

)
+n− j

)]
y = 0 , n > d , (4.5)

where y = Pn(x; d) , D = d/dx and

An = 1− cn
cn−d

γ0
n−d+1 =

(n+ 1)
(
ϑn−d − 1

)
(n+ 1)

(
ϑn−d − 1

)
+ 1

, n > d. (4.6)

Proof. From (3.1) we have

cn[xD− n]Pn(x; d)− cn−dDPn−d(x; d) = 0 , n > d, (4.7)

[xD− n]Pn(x; d) = 0 , 0 ≤ n ≤ d. (4.8)

The relation (4.7) can be written also

DPn−d(x; d) =
cn
cn−d

[xD− n]Pn(x; d). (4.9)

Otherwise, by shifting n→ n− d − 1 in (3.7) we obtain

DPn+1(x; d)− [xD + 1]Pn(x; d) = −γ0
n−d+1DPn−d(x; d). (4.10)
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To substitute (4.9) into (4.10) yields

DPn+1(x; d) =
[
An

(
xD− n

)
+ n+ 1

]
Pn(x; d), (4.11)

with An defined by (4.6).

Now let r be a positive integer. Differentiate (4.11) r times and use the identity
Dr(xD) = (xD + r)Dr , to obtain

Dr+1Pn+1(x; d) =
[
An

(
xD− n+ r

)
+ n + 1

]
DrPn(x; d). (4.12)

Now, replace in the last, (r, n) by (d− j, n− 1− j) ; 0 ≤ j ≤ d− 1, to construct the
following system:

Dd+1−jPn−j(x; d) =
[
An−1−j

(
xD−n+d+1

)
+n−j

]
Dd−jPn−1−j(x; d) , 0 ≤ j ≤ d−1.

(4.13)
From which we deduce a relation linking Pn(x; d) and Pn−d(x; d), that is

Dd+1Pn(x; d) =
[ d−1∏
j=0

(
An−1−j

(
xD − n+ d+ 1

)
+ n− j

)]
DPn−d(x; d). (4.14)

Finally, substitute (4.9) into (4.14) to obtain (4.5), the desired result. �

Applications.

We conclude this section by giving the differential equations satisfied by the
polynomials obtained in the two above examples.

• For Example 1: we have, from (3.9) and (3.23), that

cn
cn+d

= γ0
n+1 , n ≥ 0,

and then, from (4.6) we have An = 0 , n ≥ 0.

Thus, taking into account of (4.8), the differential equation (4.5) becomes

[
Dd+1 − d!

γ0
1

(
xD − n

)]
y = 0 , n ≥ 0,

that is

y(d+1) − d!

γ0
1

xy′ +
d!

γ0
1

ny = 0 , n ≥ 0, (4.15)
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• For Example 2: we have, from (3.9), (3.31) and (3.32), that

cn
cn+d

=
(d + 1)(n+ d + λ)

n+ (d + 1)λ
γ0
n+1 =

γ(d+ 1)(n+ d)!Γ(λ + n)

n!Γ(λ + d+ n)
, n ≥ 0

and then, from (4.6) we have An =
d(n+ 1)

(d+ 1)(n + λ)
, n ≥ 0.

Thus, taking into account of (4.8), the differential equation (4.5) becomes

[
Dd+1−γ−1(d+ 1)−d−1

(
xD−n

) d−1∏
j=0

(
d
(
xD−n

)
+(d+1)

(
λ+d+n−1−j

))]
y = 0 ,

n ≥ 0. (4.16)

Remarks 4.1
(a) The differential equation (4.5) is of type (4.6) considered in [1] and generalizes

the ones given in [7,8] for d = 2.
(b) The differential equation (4.15) is a particular case of the one given in [5],

which reduces, for d = 1 and γ0
1 = 1/2 , to the well-known second-order differential

equation satisfied by the Hermite polynomials:

y′′ − 2xy′ + 2ny = 0,

where y = Hn(x).
(c) For d = 1 , γ = 1/4 and λ→ α+ 1/2, in (4.16), we obtain the second-order

differential equation satisfied by the Gegenbauer polynomials:

(1− x2)y′′ − 2(α + 1)xy′ + n(n + 2α + 1)y = 0,

where y = P (α,α)
n (x).
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plications, Gauthier-Villars, Paris, 1959.



124 Y. Ben Cheikh – K. Douak

[18] E.D. Rainville, Special Functions, The Macmillan Co., New York, 1960.

[19] H. M. Srivastava, A note on generating function for the generalized Hermite
polynomials, Proc. Konin. Neder.Aka. Wetens.= Indag. math. 79 (1976) 457-
461.

[20] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput.
Appl. Math. 19 (1987) 141-150.

[21] A.L.W. Von Bachhaus, The orthogonal polynomials generated by G
[
2xt− t2

]
=∑∞

n=0 cnPn(x)t
n, Rend. Mat. VII 15 (1) (1995) 79-88.
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