Resolution of Semilinear Equations by Fixed Point Methods

P. Amster M. C. Mariani

Abstract

We give conditions in order to obtain solutions of quasilinear systems with periodic type conditions. Our main tool will be the use of fixed point theorems.

1 Introduction

In this work we will study some special cases of ordinary semilinear differential equations of the type X' = F(t, X), with boundary conditions $X(0) = q(X(\alpha))$.

The periodic problem may be regarded as a particular case, when g = I. In this case under some conditions and F Lipschitzian it is possible to obtain solutions by finding a fixed point of the Poincaré operator (see e.g. [8]).

Existence and uniqueness results for second order differential equations and systems with periodic conditions are given in [1], [2], [3], [4], [5], [6], [8], [9].

2 Existence by Fixed Point methods

We'll study the system

$$\begin{cases} X' = F(t, X) & \text{in} \quad (0, \alpha) \\ X(0) = g(X(\alpha)) \end{cases}$$
 (2)

where $F:[0,\alpha]\times R^m\longrightarrow R^m$ and $g:R^m\longrightarrow R^m$ are continuous.

Let us define

$$F_M = \sup_{t \in [0,\alpha], |x| \le M} |F(t,x)|$$

Received by the editors January 1999.

Communicated by J. Mawhin.

$$g_M = \sup_{|x| \le M} |g(x)|$$

 B_M will denote the closed ball of radius M centered in 0 in the space $C([0,\alpha],R^m)$.

Theorem 1 If $\frac{g_M}{M} + \alpha \frac{F_M}{M} \leq 1$ then (2) admits a solution in B_M . Furthermore, if F and gare Lipschitz with constants K_F and K_g , $K_g + K_F \alpha < 1$, (2) has a unique solution.

Proof:

We consider the continuous operator

$$TX(t) = g(X(\alpha)) + \int_0^t F(s, X(s))ds$$
 (3)

If $||X||_{\infty} \leq M$ then

$$|g(X(\alpha)) + \int_0^t F(s, X(s))ds| \le g_M + \alpha F_M$$

On the other hand

$$|TX(t_1) - TX(t_2)| \le |t_2 - t_1|F_M$$

By Arzela-Ascoli, we conclude that T is compact, and being $\frac{g_M}{M} + \alpha \frac{F_M}{M} \leq 1$, $T(B_M) \subset (B_M)$. By Schauder Theorem (see e.g. [7]), we conclude that T has a fixed point in B_M .

When F and g are Lipschitz with constants K_F , K_g , T is a contraction for $K_q + K_F \alpha < 1.$

Remarks.

i) If q has continuous inverse, we may consider the operator

$$TX(t) = g^{-1}(X(0)) - \int_{t}^{\alpha} F(s, X(s))ds$$

and get solutions of (2) under the same conditions of Theorem 1 for g^{-1} . In particular, if g is a linear isomorphism, $||g|| \neq 1$, the system (2) admits a solution in B_M when $||g|| + \alpha \frac{F_M}{M} \le 1$ or $||g^{-1}|| + \alpha \frac{F_M}{M} \le 1$.

ii) For constant q, Theorem 1 gives a proof of the well known existence result for ordinary equations with Cauchy data.

For linear g, existence may be obtained from a different operator if I-g is invertible:

Theorem 2.

Let g be linear such that I-g is invertible. We consider $G=B+\varphi I$, where $B = (I - g)^{-1}g$ and φ is defined by

$$\varphi(t,s) = \begin{cases} 1 & \text{if } t \ge s \\ 0 & \text{if } t < s \end{cases}$$

and assume, for a certain M, that $\int_0^\alpha |G(t,s)| ds \frac{F_M}{M} \leq 1$ for all t. Then (2) admits a solution in B_M .

Furthermore, if F is Lipschitz with constant K, $\int_0^{\alpha} |G(t,s)| dsK < 1$, (2) has a unique solution.

Proof:

For any $X \in C([0, \alpha], \mathbb{R}^m)$, we define

$$X_0 = \int_0^\alpha BF(s, X)ds$$

and

$$TX(t) = X_0 + \int_0^t F(s, X)ds = \int_0^\alpha G(t, s)F(s, X)ds$$

As in the previous theorem, T is compact and, for $||X||_{\infty} \leq M$,

$$||TX||_{\infty} \le \int_0^{\alpha} |G(t,s)| ds F_M \le M$$

By Schauder Theorem, T has a fixed point in B_M .

Moreover, if F is Lipschitz, T is a contraction.

As simple consequence we obtain the following result for g=kI, improving Theorem 1 when $k \leq 0$:

Corollary 3.

Let $k \neq 1$, g = kI, and $c = \inf_{M>0} \frac{F_M}{M}$. Then the problem (2) admits a solution in $C([0, \alpha], R^m)$ in the following cases:

i)
$$|k| \ge 1$$
, $c\alpha < \frac{k-1}{k}$
ii) $|k| < 1$, $c\alpha < 1-k$

In particular, if $\frac{\dot{F}_M}{M} \longrightarrow 0$, then for any $k \neq 1$ (2) admits a solution in $C([0,\alpha],R^m)$.

Proof:

It is immediate in this case that

$$G(t,s) = \begin{cases} \frac{1}{1-k} & \text{if } t \ge s\\ \frac{k}{1-k} & \text{if } t < s \end{cases}$$

and a simple computation shows that

$$\int_0^\alpha |G(t,s)| ds \le \frac{k}{k-1} \quad \text{if } |k| \ge 1$$

and

$$\int_0^\alpha |G(t,s)| ds \le \frac{1}{1-k} \quad \text{if } |k| < 1$$

Remark.

For n > 1, the assumption $\frac{F_M}{M} \longrightarrow 0$ is not appliable to the equation $u^{(n)} = f(t, u, ..., u^{(n-1)})$.

For the periodic problem, which is not contemplated in the results above, we have the following criteria:

Theorem 4.

If X_n is a bounded sequence in $C([0, \alpha], \mathbb{R}^m)$ such that

$$\begin{cases} X'_n = F_n(t, X_n) & \text{in} \quad (0, \alpha) \\ X_n(0) = g_n(X_n(\alpha_n)) \end{cases}$$

with linear g_n , and continuous F_n such that $g_n \longrightarrow I$, $F_n \longrightarrow F$, and $\alpha_n \longrightarrow \alpha$ $(\alpha_n \le \alpha)$. Then the periodic problem admits a solution in $C([0, \alpha], R^m)$.

Proof:

We consider the same operator as in (3) for g = I, then

$$(TX_n)' = F(t, X_n) = F(t, X_n) - F_n(t, X_n) + X_n'$$

and

$$(TX_n - X_n)(t) = (TX_n - X_n)(0) + \int_0^t F(s, X_n) - F_n(s, X_n)$$

Being T compact we may suppose that $TX_n \longrightarrow X$. Moreover, taking K compact big enough, we obtain:

$$\left| \int_0^t F(s, X_n) - F_n(s, X_n) \right| \le \alpha \|F - F_n\|_{\infty, K} \longrightarrow 0$$

and

$$(TX_n - X_n)(0) = X_n(\alpha) - g_n(X_n(\alpha_n)) = (I - g_n)(X_n(\alpha)) + g_n(X_n(\alpha) - X_n(\alpha_n)) \longrightarrow 0$$

since X_n is bounded, $I - g_n \longrightarrow 0$ and $X_n(\alpha) - X_n(\alpha_n) = \int_{\alpha_n}^{\alpha} F_n(s, X_n) \longrightarrow 0$. Then $X_n \longrightarrow X$, and X is a fixed point of T.

Theorem 5.

Let us assume that the system

$$(4_r) \begin{cases} X' = \frac{1}{r} F(t, X) & \text{in} \quad (0, \alpha) \\ X(0) = \frac{1}{r} X(\alpha). \end{cases}$$

has no solution in ∂B_M for any $r \in (1, 1 + \alpha \frac{F_M}{M}]$. Then the periodic problem (r=1) admits a solution in B_M .

Proof:

We consider the same compact operator as in (3) for g = I, and define

$$T^*X = \begin{cases} TX & \text{if } ||TX||_{\infty} \le M\\ \frac{MTX}{||TX||_{\infty}} & \text{if } ||TX||_{\infty} \ge M. \end{cases}$$

 $T^*: B_M \longrightarrow B_M$ is compact and in consequence it has a fixed point X. If X is not a fixed point of T, then $||X||_{\infty} = M$ and TX = rX, with

$$r = \frac{\|TX\|_{\infty}}{M}$$

Then the system (4_r) has a solution in ∂B_M , and $1 < r \le 1 + \alpha \frac{F_M}{M}$.

Example.

Let F be continuous with F(t,x).x < 0 for any $(t,x) \in [0,\alpha] \times R^m$ such that |x| = M. Then any solution of (4_r) verifies that $\frac{1}{2}(X.X)' = X'.X = \frac{1}{r}F(t,X).X < 0$ when |X(t)| is close to M. We conclude that if |X(0)| < M then $||X||_{\infty} < M$. On the other hand, if |X(0)| = M, $|X(\alpha)| = r|X(0)| > M$. By theorem 5, the periodic problem admits a solution in B_M .

3 Uniqueness for the problem (2)

In theorems 1 and 2 we obtained uniqueness for problem (2) when F and g are Lipschitz with small constants. Now we'll prove uniqueness under some other assumptions:

Theorem 6.

Let g be linear and F continuously differentiable with respect to X and for every $(t,x) \in (0,\alpha) \times \mathbb{R}^m$ let A(t,x) denote the matrix $D_x F(t,x)$. Then (2) has at most one solution in any of the following cases:

- i) ||g|| < 1 and $A(t,x) \le 0$ for any $(t,x) \in (0,\alpha) \times \mathbb{R}^m$.
- ii) g invertible, $||g^{-1}|| < 1$ and $A(t,x) \ge 0$ for any $(t,x) \in (0,\alpha) \times \mathbb{R}^m$.
- iii) q isometric, A(t,x) > 0 (or A(t,x) < 0) for any $(t,x) \in (0,\alpha) \times \mathbb{R}^m$, $x \neq 0$.

Proof:

Let us suppose that X and Y are solutions of (2) and take Z = Y - X. Then, Z'.Z = (F(t,Y) - F(t,X))Z, and applying for fixed t mean value theorem to $\varphi(u) = F(t, uY + (1-u)X)Z$ we see that

$$(Z.Z)' = 2A(t, \psi)Z.Z$$

for a certain $\psi(t)$.

Assuming i) we obtain that $|Z| = (Z.Z)^{1/2}$ decreases in $(0, \alpha)$, and the result follows since $|Z(0)| = |g(Z(\alpha))| < |Z(\alpha)|$. Under condition ii) the proof is analogous, considering $Z(\alpha) = g^{-1}(Z(0))$. If we assume iii), we obtain that |Z| is monotone, and if $Z(t_0) \neq 0$ then |Z| is strictly monotone in a neighborhood of t_0 , a contradiction.

ACKNOWLEDGEMENT

The authors thank specially Prof. J. Mawhin for his careful reading of the manuscript and his fruitful suggestions and remarks.

References

- [1] S. Ahmad: An existence theorem for periodically pertubed conservative systems, Michigan Math.J. 20 (1974), 385-392.
- [2] S.Ahmad, J.Salazar: On existence of periodic solutions for nonlinearly perturbed conservative systems. Differential Equations, pp. 103-114, Academic Press, Orlando, FL (1980)

- [3] P.W.Bates: Solutions of nonlinear elliptic systems with meshed spectra, J.Nonlinear Anal. 4 (1980), 1023-1030
- [4] K.J.Brown, S.S.Lin: Periodically perturbed conservative systems and a global inverse function theorem. J.Nonlinear Anal. 4 (1980), 193-201
- [5] A.Fonda, J.Mawhin:Iterative and Variational Methods for the Solvability of Some Semilinear Equations in Hilbert Spaces. Journal of Differential Equations, Vol 98, No. 2 (1992).
- [6] A. C. Lazer: Application of a lemma on bilinear forms to a problem in nonlinear oscillations, Proc. Amer. Math. Soc. 33 (1972) 89-94.
- [7] N.G.Lloyd: Degree Theory, Cambridge University Press, 1978.
- [8] J.Mawhin, Continuation theorems and periodic solutions of ordinary differential equations. Recherches de mathématique 44 (1994), Inst. de Math Pure et Apliquée, Univ.Cath.de Louvain. Prepublication
- [9] S.Tersian: On a class of abstract systems without resonance in a Hilbert Space. J.Nonlinear Anal. 6 (1982), 703-710

Dpto. de Matemática

Fac. de Cs. Exactas y Naturales, UBA

Pab. I, Ciudad Universitaria (1428) Capital, Argentina

E-mail: pamster@dm.uba.ar, mcmarian@dm.uba.ar