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Abstract

We give conditions in order to obtain solutions of quasilinear systems with
periodic type conditions. Our main tool will be the use of fixed point theorems.

1 Introduction

In this work we will study some special cases of ordinary semilinear differential
equations of the type X ′ = F (t, X), with boundary conditions X(0) = g(X(α)).

The periodic problem may be regarded as a particular case, when g = I . In this
case under some conditions and F Lipschitzian it is possible to obtain solutions by
finding a fixed point of the Poincaré operator (see e.g. [8]).

Existence and uniqueness results for second order differential equations and sys-
tems with periodic conditions are given in [1], [2], [3], [4], [5], [6], [8], [9].

2 Existence by Fixed Point methods

We’ll study the system X ′ = F (t, X) in (0, α)

X(0) = g(X(α))
(2)

where F : [0, α]× Rm −→ Rm and g : Rm −→ Rm are continuous.
Let us define

FM = sup
t∈[0,α],|x|≤M

|F (t, x)|
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gM = sup
|x|≤M

|g(x)|

BM will denote the closed ball of radius M centered in 0 in the space C([0, α], Rm).

Theorem 1

If
gM
M

+ α
FM
M
≤ 1 then (2) admits a solution in BM . Furthermore, if F and g

are Lipschitz with constants KF and Kg , Kg +KFα < 1, (2) has a unique solution.

Proof :
We consider the continuous operator

TX(t) = g(X(α)) +
∫ t

0
F (s,X(s))ds (3)

If ‖X‖∞ ≤ M then

|g(X(α)) +
∫ t

0
F (s,X(s))ds| ≤ gM + αFM

On the other hand

|TX(t1)− TX(t2)| ≤ |t2 − t1|FM

By Arzela-Ascoli, we conclude that T is compact, and being
gM
M

+ α
FM
M
≤ 1,

T (BM) ⊂ (BM). By Schauder Theorem (see e.g. [7]), we conclude that T has a
fixed point in BM .

When F and g are Lipschitz with constants KF , Kg, T is a contraction for
Kg +KFα < 1.

Remarks.
i) If g has continuous inverse, we may consider the operator

TX(t) = g−1(X(0))−
∫ α

t
F (s,X(s))ds

and get solutions of (2) under the same conditions of Theorem 1 for g−1. In partic-
ular, if g is a linear isomorphism, ‖g‖ 6= 1, the system (2) admits a solution in BM

when ‖g‖+ α
FM
M
≤ 1 or ‖g−1‖+ α

FM
M
≤ 1.

ii) For constant g, Theorem 1 gives a proof of the well known existence result
for ordinary equations with Cauchy data.

For linear g, existence may be obtained from a different operator if I − g is
invertible:

Theorem 2.
Let g be linear such that I − g is invertible. We consider G = B + ϕI , where

B = (I − g)−1g and ϕ is defined by

ϕ(t, s) =

1 if t ≥ s
0 if t < s

and assume, for a certain M , that
∫ α

0 |G(t, s)|dsFM
M
≤ 1 for all t. Then (2) admits

a solution in BM .
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Furthermore, if F is Lipschitz with constant K,
∫ α
0 |G(t, s)|dsK < 1, (2) has a

unique solution.

Proof :
For any X ∈ C([0, α], Rm), we define

X0 =
∫ α

0
BF (s,X)ds

and

TX(t) = X0 +
∫ t

0
F (s,X)ds =

∫ α

0
G(t, s)F (s,X)ds

As in the previous theorem, T is compact and, for ‖X‖∞ ≤ M ,

‖TX‖∞ ≤
∫ α

0
|G(t, s)|dsFM ≤ M

By Schauder Theorem, T has a fixed point in BM .
Moreover, if F is Lipschitz, T is a contraction.
As simple consequence we obtain the following result for g = kI , improving

Theorem 1 when k ≤ 0:

Corollary 3.
Let k 6= 1, g = kI , and c = infM>0

FM
M

. Then the problem (2) admits a solution
in C([0, α], Rm) in the following cases:

i) |k| ≥ 1, cα <
k − 1

k
ii) |k| < 1, cα < 1− k

In particular, if
FM
M
−→ 0, then for any k 6= 1 (2) admits a solution in

C([0, α], Rm).

Proof :
It is immediate in this case that

G(t, s) =


1

1−k if t ≥ s
k

1−k if t < s

and a simple computation shows that∫ α

0
|G(t, s)|ds ≤ k

k − 1
if |k| ≥ 1

and ∫ α

0
|G(t, s)|ds ≤ 1

1− k if |k| < 1

Remark.

For n > 1, the assumption
FM
M
−→ 0 is not appliable to the equation u(n) =

f(t, u, ..., u(n−1)).
For the periodic problem, which is not contemplated in the results above, we

have the following criteria:



218 P. Amster – M. C. Mariani

Theorem 4.
If Xn is a bounded sequence in C([0, α], Rm) such thatX ′n = Fn(t, Xn) in (0, α)

Xn(0) = gn(Xn(αn))

with linear gn, and continuous Fn such that gn −→ I , Fn −→ F , and αn −→ α
(αn ≤ α). Then the periodic problem admits a solution in C([0, α], Rm).

Proof :
We consider the same operator as in (3) for g = I , then

(TXn)
′ = F (t, Xn) = F (t, Xn)− Fn(t, Xn) +X ′n

and

(TXn −Xn)(t) = (TXn −Xn)(0) +
∫ t

0
F (s,Xn)− Fn(s,Xn)

Being T compact we may suppose that TXn −→ X. Moreover, taking K compact
big enough, we obtain:

|
∫ t

0
F (s,Xn) − Fn(s,Xn)| ≤ α‖F − Fn‖∞,K −→ 0

and

(TXn−Xn)(0) = Xn(α)−gn(Xn(αn)) = (I−gn)(Xn(α))+gn(Xn(α)−Xn(αn)) −→ 0

since Xn is bounded, I − gn −→ 0 and Xn(α)−Xn(αn) =
∫ α
αn Fn(s,Xn) −→ 0.

Then Xn −→ X, and X is a fixed point of T .

Theorem 5.
Let us assume that the system

(4r)


X ′ =

1

r
F (t, X) in (0, α)

X(0) =
1

r
X(α).

has no solution in ∂BM for any r ∈ (1, 1 +α
FM
M

]. Then the periodic problem (r=1)

admits a solution in BM .

Proof :
We consider the same compact operator as in (3) for g = I , and define

T ∗X =


TX if ‖TX‖∞ ≤M
MTX

‖TX‖∞
if ‖TX‖∞ ≥ M.

T ∗ : BM −→ BM is compact and in consequence it has a fixed point X. If X is
not a fixed point of T , then ‖X‖∞ = M and TX = rX, with

r =
‖TX‖∞
M
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Then the system (4r) has a solution in ∂BM , and 1 < r ≤ 1 + α
FM
M

.

Example.
Let F be continuous with F (t, x).x < 0 for any (t, x) ∈ [0, α] × Rm such that

|x| = M . Then any solution of (4r) verifies that 1
2
(X.X)′ = X ′.X =

1

r
F (t, X).X < 0

when |X(t)| is close to M . We conclude that if |X(0)| < M then ‖X‖∞ < M . On
the other hand, if |X(0)| = M , |X(α)| = r|X(0)| > M . By theorem 5, the periodic
problem admits a solution in BM .

3 Uniqueness for the problem (2)

In theorems 1 and 2 we obtained uniqueness for problem (2) when F and g are
Lipschitz with small constants. Now we’ll prove uniqueness under some other as-
sumptions:

Theorem 6.
Let g be linear and F continuously differentiable with respect to X and for every

(t, x) ∈ (0, α) × Rm let A(t, x) denote the matrix DxF (t, x). Then (2) has at most
one solution in any of the following cases:

i) ‖g‖ < 1 and A(t, x) ≤ 0 for any (t, x) ∈ (0, α) × Rm.
ii) g invertible, ‖g−1‖ < 1 and A(t, x) ≥ 0 for any (t, x) ∈ (0, α) × Rm.
iii) g isometric, A(t, x) > 0 (or A(t, x) < 0) for any (t, x) ∈ (0, α)× Rm, x 6= 0.

Proof :
Let us suppose that X and Y are solutions of (2) and take Z = Y −X. Then,

Z ′.Z = (F (t, Y )−F (t, X))Z, and applying for fixed t mean value theorem to ϕ(u) =
F (t, uY + (1− u)X)Z we see that

(Z.Z)′ = 2A(t, ψ)Z.Z

for a certain ψ(t).
Assuming i) we obtain that |Z| = (Z.Z)1/2 decreases in (0, α), and the result

follows since |Z(0)| = |g(Z(α))| < |Z(α)|. Under condition ii) the proof is analogous,
considering Z(α) = g−1(Z(0)). If we assume iii), we obtain that |Z| is monotone, and
if Z(t0) 6= 0 then |Z| is strictly monotone in a neighborhood of t0, a contradiction.
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