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Abstract

We characterize Lyndon morphisms (that is free monoids morphisms that
preserve finite Lyndon words) and morphisms that preserve lexicographic or-
der between finite words. We prove that the monoids of these morphisms are
not finitely generated. We end characterizing the episturmian morphisms that
are Lyndon morphisms and those that are order-preserving.

Résumé

Nous caractérisons les morphismes de Lyndon (à savoir les morphismes
qui préservent les mots de Lyndon) ainsi que les morphismes qui préservent
l’ordre lexicographique sur les mots finis. Nous montrons que les monöıdes
formés de ces morphismes ne sont pas finiment engendrés. Nous caractérisons
les morphismes épisturmiens qui appartiennent à chacune des deux familles
de morphismes précédentes.

1 Introduction

Let P be a property of words (finite or infinite). To generate some arbitrarily
large words with property P , a very easy way (when possible) is to use morphisms.
Although it is not necessary, it is sufficient to consider morphisms that preserve
the property P of words (and increase the length of words). Such morphisms exist
for instance for primitive words [13], square-free words or overlap-free words [24],
Sturmian words (see [1] for a general presentation), balanced binary words [15]. Here
we consider Lyndon words.
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A finite Lyndon word is a non-empty word which is smaller in lexicographic
order than all its proper suffixes (see for instance [9]). The Lyndon factorization
theorem [3] states that any finite word can be decomposed uniquely in a product
of decreasing (in lexicographic order) Lyndon words. This result was extended to
infinite words [23]. To obtain the decomposition in Lyndon words of the (infinite)
Thue-Morse word, Ido and Melançon [7] give some morphisms that preserve finite
Lyndon words. Another use of such morphisms can be found for instance in [10,
chapter 4]. Here we study these morphisms.

In Section 4, we give two characterizations of Lyndon morphisms. First a mor-
phism f on A is a Lyndon morphism if and only if it preserves lexicographic order
between finite words and f(a) is a Lyndon word for each a in A. The second char-
acterization is that for each morphism f there exists a finite set T of Lyndon words
such that f is a Lyndon morphism if and only if f(T ) is a set of Lyndon words. We
show that such a finite set T must depend on the morphism f . However we give
some families of morphisms for which there exists a finite set T which is the same
for each morphism in the concerned family.

Results in Section 4 depend on a characterization of order-preserving morphisms
given in Section 3. This result allows to check whether a morphism preserves or
does not preserve the lexicographic order. In fact, to determine whether a morphism
preserves order, it is sufficient to look at a finite set of couples of words depending
necessarily (except for 2-letter alphabets) on the morphism. We also give some
families of morphisms having the same set of couples of words to test.

In Section 5, we study the structure of the monoid of Lyndon endomorphisms
and the structure of the monoid of endomorphisms that preserve the lexicographic
order. In particular, we show that these monoids are not finitely generated. Similar
results exist for other monoids [4, 18, 20, 26]. Let us mention the rare situation
of the monoid of binary overlap-free morphisms [24] and of the monoid of binary
invertible morphisms [25] that are finitely generated. When studying cancellativity
and unitarity in the above mentioned monoids, we state a result on equality sets
between two Lyndon morphisms defined on a binary alphabet.

Due to the numerous properties they have, Sturmian words have been very well
studied (see for instance [1]). A tool in this context is the set of Sturmian mor-
phisms that are the morphisms that preserve Sturmian words. Note that Sturmian
morphisms are the invertible binary morphisms [25] (see also [1]). Sturmian words
are defined on two-letter alphabets. When considering arbitrary sized alphabets,
episturmian words [5, 8] are one generalization of Sturmian words. Episturmian
morphisms generalize Sturmian morphisms. In Section 6 we characterize the epistur-
mian morphisms that are Lyndon morphisms and those that preserve lexicographic
order.

In Section 7, we give examples of use of Lyndon morphisms. These examples
concern the Fibonacci morphism.
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2 Preliminaries

We assume the reader is familiar with combinatorics on words and morphisms (see
for instance [9, 10]). We precise our notations.

Given a set X we denote by Card(X) its cardinality.
A monoid M is a set equipped with an associative internal operation and a

neutral element e for this operation. We denote the internal operation by juxtaposi-
tion. Given a subset X of M , X+ is the subset of M constituted of all the elements
x1 . . . xn with n ≥ 1, x1, . . . , xn ∈ X. By definition, X∗ is the set X+ ∪ {e}. Given
an element x of M , we inductively define the integer powers of x by x0 = e and
xn = xxn−1. We denote x∗ the set {x}∗ and x+ the set {x}+.

A monoid M is left cancellative (resp. right cancellative) when, for any elements
x, y and z in M , if xy = xz (resp. if yx = zx) then y = zß. Let S ⊆ M be a monoid.
The monoid S is said left regular (resp. right regular) when, for any elements x and
y in M , if x and xy are in S then y ∈ S (resp. if y and xy are in S then x ∈ S).

A set of generators of M is a subset G of M such that any element of M can
be decomposed in elements of G. The monoid M is said finitely generated if it
has a finite set of generators. A presentation of the monoid M (based on a set of
generators G) is a set S of equalities between elements of G such that given any
elements f1, . . . , fn, g1, . . . , gp in G, the equality f1 . . . fn = g1 . . . gp holds if and only
if it can be stated using the equalities of S (and the trivial relations em = me = m
for any element m of M). When there is no relation between generators, the monoid
is said free.

An alphabet A is a set of symbols called letters. Here we consider only finite
alphabets. A word over A is a finite sequence of letters from A. The empty word ε
is the empty sequence of letters. Equipped with the concatenation operation, the set
A∗ of words over A is a free monoid with neutral element ε and set of generators A.
Given a non-empty word u = a1 . . . an with ai ∈ A, the length |u| of u is the integer
n. One has |ε| = 0. For a word u and a letter a, |u|a is the number of occurrences
of a in u. If for some words u, v, p, s (possibly empty), u = pvs, then v is a factor
of u, p is a prefix of u and s is a suffix of u. When p 6= u (resp. s 6= u), we say that
p is a proper prefix (resp. s is a proper suffix ) of u. A word w is said primitive if
for any word u, the equality w = un (with n an integer) implies n = 1.

Here we consider ordered alphabets. We denote An = {a1 < . . . < an} the
n-letter alphabet An = {a1, . . . , an} with order a1 < . . . < an. Recall [9] that, given
an ordered alphabet, the lexicographic order on A∗ is defined by u � v if and only
if either u is a prefix of v or u = xay, v = xbz with a, b ∈ A, a < b, x, y, z ∈ A∗. We
write u ≺ v when u � v and u 6= v. Of course the lexicographic order is an order and
so is reflexive, transitive and antisymmetric. Other properties of the lexicographic
order (u, v ∈ A∗) are:

• ∀w ∈ A∗, u � v ⇔ wu � wv.

• if u is not a prefix of v, ∀w, z ∈ A∗, u ≺ v ⇒ uw ≺ vz.

A non-empty word w is a Lyndon word if for all non-empty words u and v,
w = uv implies w ≺ vu. Equivalently [3, 9], a non-empty word w is a Lyndon word
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if all its proper non-empty suffixes are greater than it for the lexicographic order.
For instance on the one-letter alphabet {a}, only a is a Lyndon word. On {a < b}
the Lyndon words of length at most 5 are a, b, ab, aab, abb, aaab, aabb, abbb, aaaab,
aaabb, aabab, aabbb, abbbb. Lyndon words are primitive.

From now on, since there is only one Lyndon word on a one-letter alphabet, we
consider only alphabets containing at least two letters.

Let A, B be two alphabets. A morphism f from A∗ to B∗ is a mapping from A∗

to B∗ such that for all words u, v over A, f(uv) = f(u)f(v). We will say also that
f is a morphism on A or that f is defined on A (without any other precision when
B has no importance). A morphism on A is entirely known by the images of the
letters of A. When B = A, f is called an endomorphism (on A). Given an integer
L, f is L-uniform if for each letter a in A we have |f(a)| = L. The morphism f is
uniform if it is L-uniform for some integer L ≥ 0.

We denote by IdA or simply Id the identity endomorphism on A. An erasing
morphism is a morphism for which f(a) = ε for at least one a in A. The empty
morphism ε on an alphabet A is defined by ε(a) = ε, ∀a ∈ A. A permutation on
A is an endomorphism f on A such that for all a in A, |f(a)| = 1, and such that
Card({f(a) | a ∈ A}) = Card(A). For x, y ∈ A, let Exy be the morphism on A such
that Exy(x) = y, Exy(y) = x and Exy(z) = z for z ∈ A\{x, y}. Such a morphism is
called an exchange morphism.

A morphism f on A is called prefix (resp. suffix ) if for all a, b in A, f(a) is not
a prefix (resp. not a suffix) of f(b). A prefix or suffix morphism is not erasing. It is
also injective (∀u, v ∈ A∗, u 6= v ⇒ f(u) 6= f(v)).

Let f be a morphism defined on an alphabet A such that there exists a letter
a such that f(a) starts with a. Then for each integer n ≥ 0, fn(a) is a prefix
of fn+1(a). If limn→∞ |fn(a)| = ∞, one says that f generates the infinite words
fω(a) = limn→∞ fn(a).

3 Order-preserving morphisms

In Section 4 we will show that Lyndon morphisms are order-preserving morphisms.
Here we start studying these particular morphisms.

Definition 3.1. A morphism f , defined on an ordered alphabet A, is an order-
preserving morphism if for all words u, v over A, u � v implies f(u) � f(v).

The following lemma will be used very often (even without noticing it).

Lemma 3.2. Let f be an order-preserving morphism. If f 6= ε then for all words
u, v over A, u ≺ v implies f(u) ≺ f(v).

Proof. Assume there exist words x and y over A such that x ≺ y and f(x) = f(y).
We have to prove that f = ε.

Let a be the least letter in A. Since x 6= y, we have x � xa � y. Since f is
order-preserving, f(x) � f(xa) � f(y). It follows f(x) = f(xa) and so f(a) = ε.
Now let b ∈ A\{a}. From abb ≺ b ≺ bb and f order-preserving, we deduce f(abb) �
f(b) � f(bb). But f(abb) = f(bb). So f(b) = f(bb) which implies f(b) = ε. Thus
f = ε. �
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One consequence of Lemma 3.2 is that any order-preserving morphism different
from the empty morphism is an injective morphism (and in particular a non-erasing
morphism). Note also that, given an ordered alphabet A, the unique permutation
on A which is order-preserving is the identity morphism on A.

The following result characterizes order-preserving morphisms.

Proposition 3.3. Let f be a non-empty morphism on An (n ≥ 2). The morphism
f is order-preserving if and only if for each i, 1 ≤ i < n, f(aia

ki

n ) ≺ f(ai+1) where
ki is the least integer such that |f(aia

ki

n )| ≥ |f(ai+1)|.

Morphisms fk (k ≥ 0) in the proof of Proposition 3.10 explain the necessary and
sufficient condition in the previous proposition.

Proof of Proposition 3.3. Let f be a morphism on An.
Assume first that f is a non-empty order-preserving morphism. Let i, k be two

integers such that 1 ≤ i < n and k ≥ 0. Since aia
k
n ≺ ai+1, by Lemma 3.2,

f(aia
k
n) ≺ f(ai+1).

From now on, we assume that for each i, 1 ≤ i < n, f(aia
ki

n ) ≺ f(ai+1) where
ki is the least integer such that |f(aia

ki

n )| ≥ |f(ai+1)|. We prove that f is an order-
preserving morphism. We first state four successive facts.

Fact 3.4. ∀i, j, 1 ≤ i < j ≤ n, f(ai) ≺ f(aj).

Proof. Let i such that 1 ≤ i < n. The word f(ai) is a prefix of f(aia
ki

n ). So
f(ai) � f(aia

ki

n ). Since by hypothesis f(aia
ki

n ) ≺ f(ai+1), we get f(ai) ≺ f(ai+1).
Fact 3.4 follows by induction and by transitivity of ≺. �

Fact 3.5. The morphism f is not erasing.

Proof. For i such that 2 ≤ i ≤ n, from Fact 3.4, f(a1) ≺ f(ai). This implies
f(ai) 6= ε. If f(a1) = ε, since |f(a1a

k1

n )| ≥ |f(a2)|, we must have k1 6= 0. Thus f(an)
is a prefix of f(ak1

n ) = f(a1a
k1

n ). So f(an) � f(a1a
k1

n ). By hypotheses f(a1a
k1

n ) ≺
f(a2). It follows f(an) ≺ f(a2): A contradiction with Fact 3.4. �

Fact 3.6. Given any integer i with 1 ≤ i < n, and given any integer k ≥ 0,
f(aia

k
n) ≺ f(ai+1).

Proof. If k ≤ ki, f(aia
k
n) � f(aia

ki

n ) since f(aia
k
n) is a prefix of f(aia

ki

n ). By
hypothesis f(aia

ki

n ) ≺ f(ai+1). Thus f(aia
k
n) ≺ f(ai+1)

If k > ki, we know by hypothesis that f(aia
ki

n ) ≺ f(ai+1) and |f(aia
ki

n )| ≥
|f(ai+1)|. Thus there exist words u1, u2, u3 and letters c, d such that f(aia

ki

n ) = u1cu2,
f(ai+1) = u1du3 and c ≺ d. From f(aia

k
n) = f(aia

ki

n )f(ak−ki

n ), we deduce that
f(aia

k
n) = u1cu2f(ak−ki

n ) ≺ u1du3 = f(ai+1). �

Fact 3.7. Given any word u, there exists an integer k ≥ 1 such that f(u) ≺ f(ak
n).

Proof. The proof acts by induction on |u|. First note that f(ε) ≺ f(an) since, by
Fact 3.5, f is not erasing. Assume that for a word u and an integer k, f(u) ≺ f(ak

n).
We have f(anu) ≺ f(an)f(ak

n) = f(ak+1
n ). For i, 1 ≤ i < n, by Fact 3.6, f(aiu) ≺

f(ai+1), and thus by Fact 3.4, f(aiu) ≺ f(an). �
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Now we can prove that f is an order-preserving morphism. Let u, v be two words
over An such that u ≺ v. If u is a proper prefix of v, there exists a non-empty word
w such that v = uw. By Fact 3.5, f(w) 6= ε. So f(u) is a proper prefix of f(v):
f(u) ≺ f(v).

Assume now that u is not a prefix of v. There exists words u1, u2, u3 and integers
i, j such that u = u1aiu2, v = u1aju3, i < j. By Fact 3.7, there exists an integer k ≥ 0
such that f(u2) ≺ f(ak

n). Thus f(u) ≺ f(u1aia
k
n). By Fact 3.6, f(u) ≺ f(u1ai+1). By

Fact 3.4, since i + 1 ≤ j, f(ai+1) � f(aj). Thus f(u) ≺ f(u1aj). And consequently
f(u) ≺ f(v). �

As example of use of Proposition 3.3, one can check that the rather classical
morphism (see, e.g., [14]) recalled in the next example is order-preserving (ki = 1
for each i such that 1 ≤ i < n).

Example 3.8.
A∗

n → {a < b}∗

ai 7→ abi−1 for each i, 1 ≤ i ≤ n.

This example also shows that given any ordered alphabets A and B containing
at least two letters, there exists a non-trivial order-preserving morphism from A∗ to
B∗. One can also note that the lexicographical order over the code {abi | i ≥ 0}
induced on {a, b}∗ coincides with the lexicographical order over {a, b}∗ (with a < b).

Proposition 3.3 states an effective way to determine whether a morphism is order-
preserving. Indeed given a morphism f , if f 6= ε, we have to verify that the order is
verified on n − 1 couples of words. These words depend on f . A natural question
is: does there exist a finite set to check order preservation that does not depend
on the morphism? The following definition introduces formally this kind of set.
Proposition 3.10 gives a negative answer to the question.

Definition 3.9. Let F be a family of non-empty morphisms on an ordered alphabet
A. A subset S of A∗ × A∗ is a test-set for order-preserving morphisms in F if for
each morphism f in F , f is order-preserving if and only if for any u, v in S, u ≺ v
implies f(u) ≺ f(v) .

Note that similar notions of test-sets have already been used for other properties
of morphisms: see for instance [15, 19, 20, 27]. Note also that, although we check
preservation of order, Lemma 3.2 allows to take “u ≺ v implies f(u) ≺ f(v)” in
place of “u � v implies f(u) � f(v)” in the previous definition.

Despite the fact that Proposition 3.3 does not give a finite test-set for non-empty
order-preserving morphisms, it is in some way optimal as shown by the following
Proposition.
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Proposition 3.10. Given two ordered alphabets A and B such that Card(A) ≥ 3
and Card(B) ≥ 2, there is no finite test-set for non-empty order-preserving mor-
phisms from A∗ to B∗.

Proof. We first prove the proposition in case Card(B) = Card(A). Without loss
of generality we can consider that A = B. Let k ≥ 0 be an integer. Let fk be the
morphism from A∗

n to A∗
n defined by:











fk(a1) = a1,
fk(a2) = a1a

k
na2,

fk(ai) = ai for 3 ≤ i ≤ n.

This morphism fk is not an order-preserving morphism since fk(a2) ≺ fk(a1a
k+1
n )

(since n ≥ 3, an 6= a2 and so fk(an) = an).
We prove that for any words u and v such that u ≺ v and fk(v) � fk(u), we

have |u| ≥ k + 2. This is sufficient to prove that there exists no finite test-set for
order-preserving morphisms on An since any test-set contains a couple (u, v) with
|u| ≥ k + 2 for each k ≥ 0.

Since u ≺ v, v is not a prefix of u. If u is a prefix of v, there exists a non-empty
word w such that v = uw. From fk(v) � fk(u) we get fk(w) = ε, a contradiction
with fk non-erasing. Thus there exist integers i 6= j (1 ≤ i, j ≤ n) and words
x, u′, v′ such that u = xaiu

′, v = xajv
′. Since u ≺ v, we have i < j. Since fk(v) �

fk(u), we must have i = 1 and j = 2. Thus fk(u) = fk(x)a1fk(u
′) and fk(v) =

fk(x)a1a
k
na2fk(v

′). Since an is the greatest letter of An, and since ak
na2fk(v

′) � fk(u
′),

fk(u
′) must start with ak

nal with a2 ≺ al which implies that u′ starts with ak
nal. So

|u| ≥ k + 2.

We end the proof of the proposition showing that this inexistence of test-sets
does not depend on the co-domain of the morphisms. Indeed consider the order-
preserving morphism f defined in Example 3.8. The morphism ffk is a morphism
from A∗

n to {a < b}∗, and for u, v words, ffk(u) ≺ ffk(v) if and only if fk(u) ≺ fk(v)
(see also Lemma 5.2). �

Now, as corollaries of Proposition 3.3, we consider particular classes of morphisms
for which there exist finite test-sets for non-empty overlap-free morphisms: the set
{(a, b) ∈ An × An | a ≺ b} is a test-set for non-empty order-preserving prefix (resp.
uniform) morphisms on An.

Corollary 3.11. A prefix morphism on An is an order-preserving morphism if and
only if for each i, 1 ≤ i < n, f(ai) ≺ f(ai+1).

Proof. If f is an order-preserving morphism then for each i, 1 ≤ i < n, since
ai ≺ ai+1, we have f(ai) ≺ f(ai+1).

Assume now that f is a prefix morphism and for each i, 1 ≤ i < n, f(ai) ≺
f(ai+1). Let i such that 1 ≤ i < n. Since f(ai) ≺ f(ai+1) and f(ai) is not a prefix
of f(ai+1), there exist words u1, u2, u3 and letters c, d such that f(ai) = u1cu2,
f(ai+1) = u1du3 and c ≺ d. It follows that for any integer k ≥ 0, f(aia

k
n) ≺ f(ai+1).

By Proposition 3.3, f is an order-preserving morphism. �
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Corollary 3.12. A non-empty uniform morphism on An is an order-preserving
morphism if and only if, for each i, 1 ≤ i < n, f(ai) ≺ f(ai+1).

The proof of this corollary is similar to that of Corollary 3.11 and is left to the
reader.

We end this section considering the case of binary alphabets.

Lemma 3.13. Let f be a non-empty morphism on {a < b}. The four following
assertions are equivalent:

1. f is order-preserving.

2. f(ab) ≺ f(b).

3. There exists an integer l ≥ 1 such that f(alb) ≺ f(b).

4. There exist an integer k ≥ 0, words x, y, z and letters c, d with c ≺ d such that
f(a) = xcy, f(b) = f(ak)xdz.

Proof. 1 ⇒ 2 and 2 ⇒ 3 are immediate.
3 ⇒ 4. Assume now that f(alb) ≺ f(b) for an integer l ≥ 1. We must have

f(a) 6= ε. Thus |f(alb)| > |f(b)|. There exist words x1, y1, z and letters c, d such that
f(alb) = x1cy1, f(b) = x1dz. Let k be the greatest integer such that f(b) = f(ak)u.
We get f(al+k)u = x1cy1 and f(ak)u = x1dz. Since c 6= d, f(ak) is a prefix of x1.
Let x be the word such that x1 = f(ak)x. We get u = xdz that is f(b) = f(ak)xdz.
Don’t forget that f(al+k)u = x1cy1 = f(ak)xcy1. Thus f(al)u = xcy1. By definition
of k and x, f(a) is not a prefix of x. Thus xc is a prefix of f(a) since l ≥ 1. There
exists a word y such that f(a) = xcy.

4 ⇒ 1. Assume k, x, y, z, c, d are as in Assertion 4. Let u, v be two words such
that u ≺ v. If u is a prefix of v, then since f is not erasing, f(u) is a proper prefix of
f(v). If u is not a prefix of v, there exist words α, β, γ such that u = αaβ, v = αbγ.
If |β|b = 0 and |β|a ≤ k − 1 then f(u) is a prefix of f(αak) which is a proper prefix
of f(v). Else f(u) starts with f(α)f(ak)xc and f(v) starts with f(α)f(ak)xd. In all
cases f(u) ≺ f(v). �

Note that “2 ⇒ 1” is also a Corollary of Proposition 3.3. Assertions 3 and 4
sharpen equivalence “1 ⇔ 2”.

A consequence of equivalence of Assertions 1 and 2 in Lemma 3.13 is that the set
{(ab, b)} is a test-set for non-empty order-preserving morphisms on {a < b}. One
can ask whether {(a, b)} is a test-set for non-empty order-preserving morphisms on
{a < b}. The answer is no since for the morphism f defined by f(a) = a, f(b) = aa,
we have f(a) ≺ f(b) but f is not an order-preserving morphism on {a < b}.

As shown by Proposition 3.10 and morphisms used in its proof, Lemma 3.13
cannot be generalized to arbitrary alphabets.
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4 Lyndon morphisms

In this section, we characterize Lyndon morphisms (see Proposition 4.2).

Definition 4.1. Given two ordered alphabets A and B, a morphism f from A∗ to
B∗ is a Lyndon morphism if it preserves the Lyndon words, that is, for all Lyndon
words w over A, f(w) is a Lyndon word over B.

Proposition 4.2. Let n ≥ 2 be an integer. A morphism f on A∗
n is a Lyndon

morphism if and only if it verifies the two following properties:

1. f(a) is a Lyndon word for each a ∈ An,

2. f is an order-preserving morphism.

Proof. First we show that the conditions are necessary. So let f be a Lyndon
morphism. The first property is an immediate consequence of the fact that for any
letter a, the word a is a Lyndon word. Note that since the empty word is not a
Lyndon word, f is not erasing and in particular f 6= ε. To prove that the second
property is necessary, let us consider for all integers k ≥ 0, and i with 1 ≤ i < n,
the Lyndon word aia

k
nai+1. Since f is a Lyndon morphism, f(aia

k
nai+1) is a Lyndon

word. In particular f(aia
k
n) ≺ f(aia

k
nai+1) ≺ f(ai+1). By Proposition 3.3, f is

order-preserving.
Now we show that the conditions are sufficient. Let f be an order-preserving

morphism on An such that f(a) is a Lyndon word for each a in An. Note once again
that f is not erasing. Let u be a Lyndon word over A. We prove that f(u) is a
Lyndon word. For this, considering any non-empty proper suffix S of f(u), we have
to show that f(u) ≺ S.

A first case that can occur is that, for non-empty words u1, u2, we have u = u1u2,
S = f(u2). In this case, since u is a Lyndon word, u ≺ u2. Since f is order-
preserving, f(u) ≺ f(u2) = S.

If the previous case does not hold, there exist words u1, u2, p 6= ε, s 6= ε and
a letter a in An such that u = u1au2, f(a) = ps and S = sf(u2). Since f(a)
is a Lyndon word, f(a) ≺ s. Thus f(a) cannot be a prefix of s. Consequently
f(au2) ≺ sf(u2) = S. Since u is a Lyndon word, u � au2. Thus since f is an
order-preserving morphism f(u) � f(au2) ≺ S. �

As a consequence of Proposition 4.2, a Lyndon morphism is injective, non-
erasing, and non-empty.

Using Proposition 4.2 we can see that the morphism given at Example 3.8 is
a Lyndon morphism. So given two ordered alphabets A and B with Card(A) ≥ 2,
Card(B) ≥ 2, there exists a non-trivial Lyndon morphism from A∗ to B∗.

Morphisms f and fg after the proof of Lemma 5.2 are examples of morphisms
verifying Condition 2 of Proposition 4.2 but not Condition 1. In [22], one can
find morphisms with the same property. These morphisms πn are defined over the
alphabet An by πn(ai) = aiai+1 . . . ai+n−1 for 1 ≤ i ≤ n (indices are computed
modulo n).

Since there exists an algorithm to determine whether a word is a Lyndon word
[6], Propositions 4.2 and 3.3 give an algorithm to determine whether a morphism



770 G. Richomme

is a Lyndon morphism. This algorithm can be adapted to the case of morphisms
defined on a binary alphabet (using part 1 ⇔ 2 of Lemma 3.13), to the case of
prefix morphisms (using Corollary 3.11), or to the case of uniform morphisms (using
Corollary 3.12).

Proposition 4.2 has the following corollary.

Corollary 4.3. Let n ≥ 2 be an integer. A morphism f on A∗
n is a Lyndon mor-

phism if and only if it verifies the two following properties:

1. f(a) is a Lyndon word for each a ∈ An,

2. for each i, 1 ≤ i < n, f(aia
ki

n ai+1) is a Lyndon word where ki is the least
integer such that |f(aia

ki

n )| ≥ |f(ai+1)|.

Proof. The conditions are necessary by definition of a Lyndon morphism. Assume
the two conditions are verified. For each i, 1 ≤ i < n, since f(aia

ki

n ai+1) is a
Lyndon word, f(aia

ki

n ) ≺ f(aia
ki

n ai+1) ≺ f(ai+1). By Proposition 3.3, f is an order-
preserving morphism. By Proposition 4.2, f is a Lyndon morphism. �

As for order-preserving morphisms, we can define a notion of test-set for Lyndon
morphisms. Let F be a family of morphisms on an ordered alphabet A. A set S of
Lyndon words over A is a test-set for Lyndon morphisms in F , if for any morphism
in F : f is a Lyndon morphism if and only if for all words w in S, f(w) is a Lyndon
word.

In the general case, we have

Proposition 4.4. Given two ordered alphabets A and B with Card(A) ≥ 3 and
Card(B) ≥ 2, there is no finite test-sets for Lyndon morphisms from A∗ to B∗.

Proof. The proof is based on that of Proposition 3.10. If we consider the morphism
fk defined in this proposition, we can see that it is not a Lyndon morphism (since
it is not order-preserving) and that the least Lyndon word u such that fk(u) is not
a Lyndon word verifies |u| ≥ k + 3 (for example u = a1a

k
na3a2). We let the reader

end the proof. �

Moreover the next lemmas give three situations where such a test-set exists.

Lemma 4.5. The set {a, b, ab} is a test-set for Lyndon morphisms on {a < b}.

Proof. If f is a Lyndon morphism, f(a), f(b) and f(ab) are Lyndon words.

Assume conversely that f(a), f(b) and f(ab) are Lyndon words. Then f is not
erasing. Since f(ab) is a Lyndon word, f(ab) ≺ f(b). By Lemma 3.13, f is an
order-preserving morphism. Thus by Proposition 4.2, f is a Lyndon morphism. �

Using Corollaries 3.11 and 3.12, we can similarly prove

Lemma 4.6. For an integer n ≥ 2, the set An ∪ {aiai+1 | 1 ≤ i < n} is a test-set
for prefix Lyndon morphisms on An and for uniform Lyndon morphisms on An.
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One can ask if in all the previous test-sets the letters are necessary. The answer
is yes as shown by the endomorphism f on An defined by f(ai) = aiai for each i
with 1 ≤ i ≤ n, which is an order-preserving morphism but not a Lyndon one.

To end this section, we give a more precise result than Proposition 4.2 in case of
binary alphabet. Using Lemma 3.13, in this case, Proposition 4.2 says: A morphism
f on {a < b} is a Lyndon morphism if and only if firstly f(a) and f(b) are Lyndon
words, and secondly f(ab) ≺ f(b). The last part can be changed:

Proposition 4.7. A morphism f on {a < b} is a Lyndon morphism if and only if

1. f(a) and f(b) are Lyndon words,

2. f(a) ≺ f(b).

Proof. Let f be a morphism on {a < b}.
If f is a Lyndon morphism, by Proposition 4.2, f(a) and f(b) are Lyndon words.

Moreover f is an order-preserving morphism. Since a ≺ b, f(a) ≺ f(b).
Assume conversely that f(a) and f(b) are Lyndon words, and f(a) ≺ f(b). By

Lemma 3.13 and Proposition 4.2, to prove that f is a Lyndon morphism, we just
have to state that f(ab) ≺ f(b). If f(a) is not a prefix of f(b), f(a) ≺ f(b) implies
that f(a) = xay, f(b) = xbz for words x, y, z over {a < b}. Then f(ab) ≺ f(b).
If f(a) is a prefix of f(b), f(b) = f(a)u for a non-empty word u. Since f(b) is a
Lyndon word, f(a)u ≺ u. Consequently f(a)f(a)u ≺ f(a)u, that is, f(ab) ≺ f(b).

�

5 Non finitely generated monoids

Let f and g be two composable morphisms. If both f and g are Lyndon (resp.
order-preserving, uniform) morphisms, then fg is a Lyndon (resp. order-preserving,
uniform) morphism. On the other hand, the identity morphism (on any alphabet)
is a Lyndon (resp. order-preserving, uniform) morphism. The aim of this section is,
given an ordered alphabet A, to study the monoid of (uniform) Lyndon endomor-
phisms on A, and the monoid of (uniform) order-preserving endomorphisms on A.
We first prove:

Proposition 5.1. Given an integer n ≥ 2, the monoid of Lyndon endomorphisms
on An, the monoid of uniform Lyndon endomorphisms on An, the monoid of order-
preserving endomorphisms on An and the monoid of uniform order-preserving en-
domorphisms on An are not finitely generated.

Proof. For any integer p ≥ 2, we define a uniform endomorphism fp on An by:










fp(a1) = ap
1a2,

fp(ai) = ai−1a
p−1
i ai+1 for i such that 2 ≤ i ≤ n − 1,

fp(an) = an−1a
p
n.

By Corollary 3.12, the morphism fp is order-preserving. By Proposition 4.2, it is a
Lyndon morphism.

We prove that for each p ≥ 2, fp belongs to any set of generators of the monoid
of (uniform) Lyndon endomorphisms on An, or, of the monoid of (uniform) order-
preserving endomorphisms on An: So this set is not finite. Let g and h be two
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order-preserving endomorphisms on An such that fp = gh. We state that g or h is
the identity morphism on An.

Let G = {g(a) | a ∈ An}. Since g 6= ε and g is order-preserving, for each
(a, b) ∈ A × A, g(a) 6= g(b): Card(G) = n. Since fp = gh, for each i between 1 and
n, fp(ai) ∈ G+. Thus for each j, 1 ≤ j ≤ n − 1, there is at least one word in G
starting with aj . We consider two cases.

Case 1: G contains one word starting with an. Since g is order-preserving, for each
i, 1 ≤ i ≤ n, g(ai) is the unique word in G starting with ai. Since p ≥ 2, fp(a1)
starts with a1a1, thus with g(a1). Moreover fp(a2) starts with a1a2, thus with
g(a1). It follows g(a1) = a1. Since fp(a1) = ap

1a2 ∈ G∗, and since g(a1) is
the unique word in G starting with a1, we have a2 ∈ G: g(a2) = a2. In the
same manner, by induction, we can show that g(ai) = ai for 3 ≤ i ≤ n using
fp(ai−1) = ai−2a

p−1
i−1 ai. So g = IdAn

.

Case 2: G contains no word starting with an. There exists an integer m, 1 ≤ m ≤
n− 1 such that G contains two words starting with am and such that for each
integer i 6= m with 1 ≤ i < n, G contains only one word starting with ai.

Assume first m > 1. Since g is order-preserving, for each j with 1 ≤ j < m,
g(aj) is the word in G starting with aj, g(am) and g(am+1) start with am,
and, for each j with m + 2 ≤ j ≤ n, g(aj) is the word in G starting with
aj−1. As in Case 1 (using values fp(aj), 1 ≤ j ≤ m − 1), we can see that for
each i with 1 ≤ i ≤ m, g(ai) = ai. Since no word in G starts with an, and
since fp(an) = an−1a

p
n ∈ G∗, g(an) = fp(an). If m 6= n − 1 (possible if n ≥ 3

since n − 1 ≥ m ≥ 2), since fp(an−1) = an−2a
p−1
n−1an ∈ G∗, since g(an) is the

only word in G starting with an−1, and since no word in G starts with an,
g(an−1) = fp(an−1). By induction, we can see for each i with m + 1 ≤ i ≤ n,
g(ai) = fp(ai). In these conditions, we cannot have fp(am) = am−1a

p
mam+1 ∈

G∗. A contradiction.

Thus m = 1. As in the last part of the case m > 1, we can see for each i with
2 ≤ i ≤ n, g(ai) = fp(ai). Since none of these n − 1 words of G is a factor
of fp(a1) = ap

1a2, we have g(a1) = fp(a1). Consequently g = fp, and so h is a
permutation of An. Since h is order-preserving, h = IdAn

.

�

Note that the previous proposition can be stated (with the same proof) for the
monoid of prefix Lyndon (resp. prefix order-preserving) endomorphisms on An.

Now we study unitarity in the previous monoids. For immediate reasons, we
exclude the empty morphism from the discussion. The following lemma states the
left unitarity:

Lemma 5.2. Let f and g be two composable non-empty morphisms (defined on
alphabets of cardinality at least two) where f is an order-preserving morphism.

1. fg is an order-preserving morphism if and only if g is an order-preserving
morphism.
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2. if fg is a Lyndon morphism then g is a Lyndon morphism.

Note that the converse of Assertion 2 does not hold. For instance take g = IdAn

and define f by f(ai) = aiai for 1 ≤ i ≤ n: f is order-preserving, g is a Lyndon
morphism but fg is not a Lyndon morphism.
Proof of Lemma 5.2. Assume that g is not an order-preserving morphism. Then
there exist words u and v such that u ≺ v and g(v) � g(u). Since f is an order-
preserving morphism, fg(v) � fg(u). By Lemma 3.2, the morphism f is not erasing.
Since g 6= ε, we also have fg 6= ε. Once again by Lemma 3.2, fg is not an order-
preserving morphism. This ends the proof of the first part.

Assume f is order-preserving and fg is a Lyndon morphism on A. From Propo-
sition 4.2, fg is order-preserving and for all a in A, fg(a) is a Lyndon word (so fg
is not erasing). From the first part of Lemma 5.2, g is order-preserving. Let a be a
letter and let S be a non-empty proper suffix of g(a). Since f 6= ε, by Lemma 3.2,
f is not erasing and so f(S) 6= ε. Since fg(a) is a Lyndon word, fg(a) ≺ S. Since
f is order-preserving, g(a) ≺ S. Thus g(a) is a Lyndon word. By Proposition 4.2 g
is a Lyndon morphism. �

The monoid of order-preserving non-empty endomorphisms on An is not right
unitary: there exist non-empty endomorphisms f, g on An such that fg and g are
order-preserving but not f . This is the case for instance for the morphisms f and g
defined by:











f(a1) = a2a1,
f(a2) = a2,
f(ai) = aiai for 3 ≤ i ≤ n.











g(a1) = a1,
g(a2) = a2a2,
g(ai) = ai for 3 ≤ i ≤ n.

We have fg(a1) = a2a1, and fg(ai) = aiai for 2 ≤ i ≤ n. By Corollary 3.11, fg and
g are order-preserving. Since f(a2) ≺ f(a1), f is not order-preserving.

The situation is different when we consider only uniform endomorphisms on A2.

Lemma 5.3. Let f and g be two non-empty uniform endomorphisms on {a < b}.
If fg and g are order-preserving, then f is order-preserving.

Proof. Let f and g be two non-empty uniform endomorphisms on {a < b} such
that fg and g are order-preserving. Since g is order-preserving, g(a) ≺ g(b). Since g
is uniform, there exist words x, y, z such that g(a) = xay, g(b) = xbz with |y| = |z|.
Since fg is order-preserving and fg 6= ε, by Lemma 3.2, fg(a) ≺ fg(b) which
implies f(a)f(y) ≺ f(b)f(z). Since y, z ∈ {a, b}∗ and |y| = |z|, f(a) = f(b) implies
fg(a) = fg(b). Thus f(a) 6= f(b). Since f is uniform, f(a) is not a prefix of f(b),
and f(b) is not a prefix of f(a). From f(a)f(y) ≺ f(b)f(z), we get f(a) ≺ f(b). �

When n ≥ 3, the monoid of uniform order-preserving endomorphisms on An is
not right unitary (this is essentially due to the existence of morphisms from A∗

n to
A∗

n−1). To prove this, it is sufficient to consider for instance the morphisms f and g
defined by



















f(a1) = a1,
f(a2) = a2,
f(a3) = a1,
f(ai) = ai for 4 ≤ i ≤ n.



















g(a1) = a1a1a1a2,
g(a2) = a1a1a2a2,
g(a3) = a1a2a2a2,
g(ai) = a1aiaiai for 4 ≤ i ≤ n.
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The situation depicted in Lemma 5.3 does not hold in case of Lyndon morphisms:
if, for non-empty endomorphisms f and g, fg and g are Lyndon morphisms, then f
is not necessary a Lyndon morphism. Actually, for any integer n ≥ 2, the monoid
of Lyndon morphisms on An, and the monoid of uniform Lyndon morphisms on An

are not right unitary. This can be shown using the endomorphisms on An defined
by











f(a1) = a1a1,
f(a2) = a2a2,
f(ai) = aiai for 3 ≤ i ≤ n.











g(a1) = a1a1a2,
g(a2) = a1a2a2,
g(ai) = a1aiai for 3 ≤ i ≤ n.

We now study cancellativity in the considered monoids. Once again we exclude
the empty morphism from the discussion.

Since any non-empty order-preserving morphism is injective, the monoid of (uni-
form) non-empty order-preserving endomorphisms on An is left cancellative: for
f, g, h non-empty order-preserving endomorphisms on An, if hf = hg then f = g.
It is also the case for the monoid of (uniform) Lyndon endomorphisms on An.

For any integer n ≥ 2, the monoid of non-empty order-preserving endomorphisms
on An is not right cancellative. This is shown by the order-preserving endomorphisms
f, g, h defined on An by f(a1) = a1a2a1, f(a2) = a2, g(a1) = a1, g(a2) = a2a1a2,
h(a1) = a1a2, h(a2) = a2a1 and for 3 ≤ i ≤ n, f(ai) = g(ai) = h(ai) = ai. We have
fh = gh and f 6= g.

The following example shows that right cancellativity is not obtained even for
uniform order-preserving endomorphisms on An when n ≥ 3: h(a1) = a2a2a2a3,
h(a2) = a2a2a3a3, h(a3) = a2a3a3a3, h(ai) = a2aiaiai for i ≥ 4, f(ai) = g(ai) =
a1aiaiai for i ≥ 2 and f(a1) = a1a1a1a2, g(a1) = a1a1a2a2. But observe

Lemma 5.4. Let A and B be two ordered alphabets. Let h be a non-erasing mor-
phism from A∗ to B∗ such that each letter of B is a factor of a word in h(A). Let
f, g be two uniform morphisms on B such that fh = gh. Then f = g.

Proof. Assume f is L1-uniform and g is L2-uniform. We have L1|h(a)| = |fh(a)| =
|gh(a)| = L2|h(a)|. Since h is not erasing, L1 = L2. The lemma follows immediately
from the fact that each letter of B is a factor of a word in h(A). �

As a consequence of this lemma, we can see that right cancellativity is verified in
the monoid of non-empty uniform order-preserving endomorphisms on A2. Indeed,
it is not difficult to see that if h is a non-empty order-preserving endomorphism on
A2, both a and b are factors of words of h(A2).

The example before Lemma 5.4 also shows that the monoid of (resp. uniform)
Lyndon endomorphisms on An is not right cancellative when n ≥ 3.

Now we prove that the monoid of Lyndon endomorphisms on A2 is right can-
cellative. This is a consequence of the following proposition. Let recall [21, chapter
7], that for two morphisms f and g defined on an alphabet A, the equality set of f
and g is the set:

E(f, g) = {w ∈ A+ | f(w) = g(w)}.

Proposition 5.1 in [21, chapter 7] says: Given two non-periodic morphisms f and
g defined on a binary alphabet, there exist words u, v, w such that E(f, g) = ∅ or
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E(f, g) = {u, v}+ or E(f, g) = (uw∗v)+ (a morphism on A is periodic if there exists
a word z such that for all letter a in A, f(w) ⊆ z∗: a Lyndon morphism is not
periodic). In the particular case of Lyndon morphisms, we have:

Proposition 5.5. Given two different Lyndon morphisms on {a < b}, we have
E(f, g) = ∅ or E(f, g) = b+ or E(f, g) = (abn)+ for an integer n ≥ 0.

Proof. Let f and g be two Lyndon morphisms on {a < b} such that E(f, g) 6= ∅.
First we consider the case f(a) = g(a). In this case a+ ⊆ E(f, g) (or equivalently

(ab0)+ ⊆ E(f, g)). Assume there exists a word w in E(f, g)\a+. Then |w|b 6= 0. If
|w|b = 1, since f(w) = g(w) and f(a) = g(a), we have f(b) = g(b): a contradiction
with f 6= g. It follows |w|b ≥ 2, that is, w = ambvban for a word v and integers m
and n. From f(w) = g(w) and f(a) = g(a), we deduce f(bvb) = g(bvb). Without
loss of generality, we can assume |f(b)| < |g(b)|. Thus f(b) is both a prefix and
a suffix of g(b): a contradiction with g(b) a Lyndon word because f(b) 6= ε. We
conclude in this case E(f, g) = a+.

Similarly, in case f(b) = g(b) we have E(f, g) = b+.

From now on, we assume that f(a) 6= g(a) and f(b) 6= g(b).
Observe E(f, g) ∩ a(a, b)∗a = ∅. Indeed otherwise let awa ∈ E(f, g). Without

loss of generality we can assume |f(a)| < |g(a)|. Then f(awa) = g(awa) implies
f(a) is both a prefix and a suffix of g(a): a contradiction with g(a) is a Lyndon
word.

Similarly E(f, g) ∩ b(a, b)∗b = ∅.

Now we prove E(f, g) ∩ b(a, b)∗a = ∅. Let u be a word in b(a, b)∗a such that
f(u) = g(u). Without loss of generality we assume |f(a)| < |g(a)|. We have

|u|a(|g(a)| − |f(a)|) = |u|b(|f(b)| − |g(b)|). (1)

So |f(b)| > |g(b)|. It follows that g(b) is a proper prefix of f(b) and f(a) is a proper
suffix of g(a). Consequently since g(a) is a Lyndon word, g(a) ≺ f(a). Let w be the
longest word such that wa is a suffix of u and f(wa) is a suffix of g(a). Let v be the
word such that u = vwa and let S be the suffix of f(v) such that g(a) = Sf(wa).
If S = ε, then since g(a) 6= f(a), |w| ≥ 1. Let x be the first letter of w. Since
f(x) is a proper prefix of g(a), f(x) ≺ g(a). But since f is a Lyndon morphism,
by Proposition 4.2, f(a) ≺ f(b): a contradiction with g(a) ≺ f(a). Thus S 6= ε.
By construction, S is a proper suffix of f(a) or of f(b). Since g(a) = Sf(wa) is a
Lyndon word, S is not a suffix of f(a). Since f(b) is a Lyndon word, f(b) ≺ S. But
once again f(a) ≺ f(b). We get f(b) ≺ S ≺ g(a) ≺ f(a) ≺ f(b): this is impossible.

From now on let u be a word in E(f, g) ∩ a(a, b)∗b. Once again without loss of
generality we assume |f(a)| < |g(a)|. Equation (1) is still valid and so |f(b)| > |g(b)|.
By definition of u, we deduce that f(a) is a prefix of g(a) and g(b) is a suffix of
f(b). Consequently f(a) ≺ g(a), and since f(b) is a Lyndon word, f(b) ≺ g(b).
Moreover since f and g are Lyndon morphisms, by Proposition 4.2, f(a) ≺ f(b) and
g(a) ≺ g(b).

Let w be the longest word such that aw is a prefix of u and f(aw) is a prefix
of g(a). Let v be the word such that u = awv and let P be the prefix of f(v) such
that g(a) = f(aw)P .
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Let us prove g(a) ≺ f(b). If P = ε, since g(a) 6= f(a), |w| ≥ 1. Since g(a) =
f(aw) is a Lyndon word, w must ends with b and so g(a) ≺ f(b). In this case g(a)
cannot be a prefix of f(b). If P 6= ε, by construction, P is a proper prefix of f(a) or
a proper prefix of f(b). Since g(a) is a Lyndon word and starts with f(a), P must
be a prefix of f(b) and so g(a) ≺ P ≺ f(b). Note that since P is a proper suffix of
g(a), g(a) cannot be a prefix of f(b).

So f(a) ≺ g(a) ≺ f(b) ≺ g(b) and g(a) is not a prefix of f(b). It follows:

• g(a) is not a prefix of a word in {f(a), f(b), g(b)},

• g(b) is not a prefix of a word in {f(a), f(b), g(a)},

• f(a) is not a prefix of a word in {f(b), g(b)},

• f(b) is not a prefix of a word in {f(a), g(a)}.

In particular f and g are prefix morphisms. Moreover since g(b) is a proper suffix
of f(b), f(b) is not a prefix of g(b).

We have P 6= ε. Indeed if P = ε, g(a) = f(aw). Since g(a) is a Lyndon word,
|w|b 6= 0. There exist an integer n ≥ 1 and a word w1 such that aw = anbw1.
Since f(u) = g(u) and u = anbw1v, f(v) = g(an−1)g(b)g(w1v). Since f is a prefix
morphism and f(v) starts with f((abnw1)

n−1), we get v starts with (anbw1)
n−1. Let

v′ be the word such that v = (anbw1)
n−1v′. We have f(v′) = g(b)g(w1v). But this

equality is impossible because g is not erasing (as a Lyndon morphism), g(b) is a
prefix neither of f(a) nor of f(b), and f(a) and f(b) are not prefixes of g(b).

From now on P 6= ε. Let recall that P is a prefix of f(v). We have already
said that P , by construction, must be a prefix of f(a) or of f(b). But P cannot
be a prefix of f(a) since g(a) is a Lyndon word. So v starts with b. Let v′ be the
word such that v = bv′ and let S be the word such that f(b) = PS. We have
Sf(v′) = g(wbv′).

Let w3 be the longest prefix of wbv′ such that g(w3) is a prefix of S. Let S ′ be
the word such that S = g(w3)S

′.
Assume S ′ 6= ε. By construction S ′ is a proper prefix of g(a) or of g(b). But S ′

is a suffix of f(b). Since f(b) is a Lyndon word, f(b) ≺ S ′. It follows g(a) ≺ S ′.
This implies that S ′ is a proper prefix of g(b). But S ′ and g(b) are suffixes of f(b).
Thus S ′ is both a prefix and a suffix of the Lyndon word g(b): a contradiction.

So S ′ = ε, that is S = g(w3), g(a) = f(aw)P and f(v′) = g(w4).
If v′ 6= ε or w4 6= ε, since f and g are not erasing then v′ 6= ε and w4 6= ε. Recall

that f(a) is not a prefix of g(b), that f(b) is a prefix neither of g(a) nor of g(b), that
g(a) is not a prefix of f(b) and that g(b) is a prefix neither of f(a) nor of f(b). In
this case both v′ and w4 must start with a. Thus f(v′) starts with g(a) = f(aw)P .
Since f is a prefix morphism, v′ starts with aw. Morevoer since P is not a prefix of
f(a), v′ starts with awb and g(w4) starts with f(awb) = g(aw3). Since g is a prefix
morphism w4 must start with aw3. By induction we deduce that for an integer
m ≥ 1 :

u = (awb)m = (aw3)
m.

So aw3 = awb.
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Remember that S = g(w3) is a proper suffix of the Lyndon word f(b), f(a) ≺ f(b)
and f(a) is not a prefix of f(b). So f(a) cannot be a factor of S. Since f(a) is a
prefix of g(a), this implies |w3|a = 0. Taking n = |w3|, we have awb = abn and
u ∈ (abn)+.

We have seen that when (v′, w4) 6= (ε, ε), v′ starts with awb and w4 starts with
aw3. In the same manner, we can see that words w, w3 and integer n are the same
for any word u such that f(u) = g(u).

Thus in case f(a) 6= g(a), f(b) 6= g(b), E(f, g) 6= ∅, we have E(f, g) = (abn)+ for
an integer n ≥ 1. �

Before concluding about cancellativity, we give examples of equality sets for
Lyndon morphisms. Let n ≥ 1 be an integer. Let f1, f2 and f3 be the three
Lyndon endomorphisms on {a < b} defined by f1(a) = aab, f1(b) = b, f2(a) = aab,
f2(b) = abn+1, f3(a) = aab(abn+1)n−1ab, f3(b) = b. We can see that E(f1, f2) =
a+, E(f1, f3) = b+, E(f2, f3) = (abn)+. This example shows that integer n in
Proposition 5.5 can be arbitrary.

Corollary 5.6. The monoid of Lyndon endomorphisms on A2 is right cancellative.

Proof. Let f, g, h be three Lyndon endomorphisms on A2 such that fh = gh. If f
and g are different, then since h(a) and h(b) are Lyndon words, they are primitive
words. So by Proposition 5.5, h(a) = h(b) = b or h(a) = h(b) = abn for an integer
n ≥ 0. By Proposition 4.2, h is order-preserving: a contradiction with Lemma 3.2.

�

6 Episturmian morphisms

In this section, we study the episturmian morphisms that are order-preserving mor-
phisms and those that are Lyndon morphisms. Let recall that episturmian mor-
phisms [5, 8, 16, 17] are a generalization of Sturmian morphisms [1].

An endomorphism on an alphabet A is an episturmian morphism if it belongs to

Episturm(A) = (Exch(A) ∪ {Ψα, Ψα/α ∈ A})∗.

where Exch(A) is the set of exchange morphisms and for α ∈ A,

Ψα:

{

α → α
x → αx, ∀x ∈ A\{α}

Ψα:

{

α → α
x → xα, ∀x ∈ A\{α}

In the rest of this section, we consider an ordered alphabet A of cardinality at
least two. We call a (resp. b) the least (resp. the greater) letter of A for the
lexicographic order.

Let α ∈ A. One can note that Ψα preserves order. But Ψα preserves the
lexicographic order if and only if α = a. Indeed if α 6= a, Ψα(α) is a prefix of Ψα(a).
More generally, we have:
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Proposition 6.1. An episturmian morphism is order-preserving if and only if

1. it belongs to {Ψα, Ψα/α ∈ A}∗ and

2. for all x, y ∈ A, x ≺ y implies f(y) is not a prefix of f(xy).

The proof of this proposition needs the following relations and lemma.
Let z ∈ A and E ∈ Exch(A). We have EΨz(z) = E(z) = ΨE(z)E(z), EΨz(z) =

E(z) = ΨE(z)E(z), and for x in A\{z}, EΨz(x) = E(z)E(x) = ΨE(z)E(x), EΨz(x) =
E(x)E(z) = ΨE(z)E(x). So

EΨz = ΨE(z)E, (2)

EΨz = ΨE(z)E (3)

Lemma 6.2. Let a1, . . . , ak, b1, . . . , bk be 2k letters (k ≥ 1). Let P1, . . . , Pk be
permutations such that bi = (PiPi+1 . . . Pk)

−1(ai). For each i, 1 ≤ i ≤ n, let
fi ∈ {Ψai

, Ψai
}, and let gi = Ψbi

if fi = Ψai
, or gi = Ψbi

if fi = Ψai
. Then

the following relation can be stated using Relations (2) and (3).

f1P1f2P2 . . . fkPk = P1 . . . Pkg1 . . . gk. (4)

Proof. Relations (2) and (3) can be used to show inductively that for exchange
morphisms E1, . . . , En:

ΨzE1E2 . . . En = E1 . . . EnΨEnEn−1...E1(z).

This proves Formula (4) when k = 1, since (E1 . . . En)−1 = En . . . E1 and any
permutation can be decomposed as a product of exchange morphisms.

It follows from what precedes that with the hypotheses of the lemma, we have
for each i, 1 ≤ i ≤ k,

fiPiPi+1 . . . Pk = PiPi+1 . . . Pkgi

The proof of lemma follows by induction. �

Let observe that if, in the hypothesis of Lemma 6.2, we take bi = (P1 . . . Pi)
−1(ai)

for each i, 1 ≤ i ≤ n, we can state

P1f1P2f2 . . . Pkfk = g1 . . . gkP1 . . . Pk.

Consequently any episturmian morphism can be decomposed as f = g1P = Pg2

where g1, g2 ∈ {Ψα, Ψα/α ∈ A}∗ and P is a permutation (such decompositions are
unique [8]).

Proof of Proposition 6.1. Let f be an episturmian morphism. If for letters x, y
with x ≺ y, f(y) is a prefix of f(xy), then f does not preserve the lexicographic
order. Thus, in what follows, we suppose f is an episturmian morphism such that
for all x, y ∈ A, x ≺ y implies f(y) is not a prefix of f(xy). Then we have to prove
that f is order-preserving if and only if f ∈ {Ψα, Ψα/α ∈ A}∗.

By Lemma 6.2, there exist a permutation P and k ≥ 0 morphisms f1, . . . , fk in
{Ψα, Ψα/α ∈ A} such that f = Pf1 . . . fk. So we have to prove that f is order-
preserving if and only if P is the identity morphism. Before doing this, we prove
the following fact.
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Fact 6.3. Let x, y be letters such that x ≺ y. For each integer i, 1 ≤ i ≤ k + 1,
there exists a word wi such that fi . . . fk(xy) starts with wix and fi . . . fk(y) starts
with wiy.

Proof. We prove this fact by induction on k. Denoting fk+1 . . . fk the identity
morphism, the property is true for i = k + 1 with wk+1 = ε.

Now assume the existence of wi+1 for an integer i, 1 ≤ i ≤ k. If fi ∈ {Ψα/α ∈ A},
then taking wi = fi(wi+1), we get the expected property. Assume now fi = Ψα

for a letter α. Let wi = fi(wi+1)α. When α 6∈ {x, y}, the property is verified. If
α = x, then fi . . . fk(y) starts with wiy. Let z be the word such that fi+1 . . . fk(xy) =
wi+1xz. We have fi . . . fk(xy) = wifi(z). Since |fi . . . fk(xy)| ≥ |fi . . . fk(y)| ≥ |wi|+
1, we get z 6= ε and fi . . . fk(xy) starts with wix. Finally let consider the case α = y.
Then fi . . . fk(xy) starts with wix. Let z be the word such that fi+1 . . . fk(y) =
wi+1yz. We have fi . . . fk(y) = wifi(z). If z = ε, fi . . . fk(y) is a prefix of fi . . . fk(xy).
It follows f1 . . . fk(y) is a prefix of f1 . . . fk(xy): a contradiction. Thus z 6= ε and
fi . . . fk(y) starts with wiα = wiy. The property is once again verified. �

Now we end the proof of Proposition 6.1.
If P is not the identity morphism, there exist letters x, y such that x ≺ y and

P (y) ≺ P (x). Taking w1 defined as in Fact 6.3, f(xy) starts with P (w1)P (x) and
f(y) starts with P (w1)P (y): f does not preserve the lexicographic order.

If P is the identity morphism, we apply Proposition 3.3. Let n = Card(A):
A = An with a1 = a and an = b. Let i, 1 ≤ i < n and let m be the least in-
teger such that |f(aia

m
n )| ≥ |f(ai+1)|. As done for the previous fact, we can see

that for each j, 1 ≤ j ≤ k + 1, there exists a word wj such that fj . . . fk(aia
m
n )

starts with wjai, fj . . . fk(ai+1) starts with wjai+1 (it is useful to prove simultane-
ously that fj . . . fk(aiai+1) starts with wjai). Consequently f(aia

m
n ) ≺ f(ai+1). By

Proposition 3.3, f is order-preserving. �

Let now study connections between episturmian morphisms and Lyndon mor-
phisms. Let α ∈ A. By Proposition 4.2, the morphism Ψα is a Lyndon morphism if
and only if α = a. Moreover the morphism Ψα is a Lyndon morphism if and only if
α = b. More generally:

Proposition 6.4. An episturmian morphism is a Lyndon morphism if and only if
it belongs to the set

({Ψα/α ∈ A\{a}}∗Ψa)
∗Ψ

∗

b .

Proof. First we prove that the condition is sufficient. We have already said that
Ψa and Ψb are Lyndon morphisms.

Let prove that for α ∈ A\{a}, Ψα preserves the Lyndon words starting with a.
Let u ∈ A∗ such that au is a Lyndon word. Let α ∈ A with α 6= a and P 6= ε,
S 6= ε such that Ψα(au) = PS. If S starts with α, since PS starts with a ≺ α,
Ψα(au) ≺ S. Otherwise there exist non-empty words p, s such that P = Ψα(p),
S = Ψα(s) and au = ps. Since au is a Lyndon word, au ≺ s. Since Ψα is order-
preserving, Ψα(au) ≺ S. The word Ψα(au) is a Lyndon word.

For all x in A, Ψa(x) is a Lyndon word starting with a. From what precedes,
given any element f in {Ψα/α ∈ A\{a}}∗Ψa, for all x in A, f(x) is a Lyndon word
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starting with a. Moreover each morphism in {Ψα/α ∈ A\{a}} ∪ {Ψa} is an order-
preserving morphism. So any morphism in {Ψα/α ∈ A\{a}}∗Ψa is order-preserving.
By Proposition 4.2 such a morphism is a Lyndon morphism.

Consequently any element in ({Ψα/α\{a}}∗Ψa)
∗{Ψb}

∗ is a Lyndon morphism as
a product of Lyndon morphisms.

Now we prove that the condition is necessary. Let f be an episturmian morphism
which is a Lyndon morphism. By Proposition 4.2, f is order-preserving. If it is the
identity, the result is obvious. Assume f 6= Id. By Proposition 6.1, there exist n ≥ 1
morphisms f1, . . . , fn ∈ {Ψα, Ψα/α ∈ A} such that f = f1 . . . fn.

If for all i, 1 ≤ i ≤ n, fi ∈ {Ψα/α ∈ A}, then f(b) starts with b. If moreover
there exists j, 1 ≤ j ≤ n, fj 6= Ψb then α ≺ b occurs in f(b): a contradiction since
f(b) is a Lyndon word. Then f ∈ Ψ

∗

b .
Now assume there exists an integer i and a letter β in A, 1 ≤ i ≤ n, such that

fi = Ψβ. Choose i in such a way that for all j, 1 ≤ j < i, fj ∈ {Ψα/α ∈ A}. If
β 6= a, the word fi . . . fn(a) is not a Lyndon word since it starts with β and contains
the letter a. Since {Ψα/α ∈ A} is a set of order-preserving morphisms, f(a) is not a
Lyndon word. So β = a. Similarly we can prove that for each j, 1 ≤ j < i, fj 6= Ψa.

It follows that f1 . . . fi belongs to {Ψα/α ∈ A\{a}}∗Ψa. From the sufficient con-
dition, it is a Lyndon morphism. By Lemma 5.2(2) and Proposition 4.2, fi+1 . . . fn

is a Lyndon morphism. The proof ends by induction. �

Note that when Card(A) = 2 (that is in case of Sturmian morphisms), the
monoid of Sturmian morphisms which are Lyndon morphisms is (finitely) generated
by {Ψa, Ψb}. A question is: is it still the case when Card(A) ≥ 3 or when considering
episturmian order-preserving morphisms? To answer this question, we need a pre-
sentation of the monoid of episturmian morphisms with Exch(A)∪{Ψα, Ψα/α ∈ A}
as a set of generators.

Proposition 6.5. The monoid Episturm(A) with Exch(A) ∪ {Ψα, Ψα/α ∈ A} as a
set of generators has the presentation given by Relations (2), (3) and the following
relations (x, y, z, t are pairwise different letters):

ExyExy = Id, (5)

ExyEyz = EyzEzx, (6)

ExyEzt = EztExy, (7)

Ψ1Ψ2 . . .ΨkΨ1 = Ψ1Ψ2 . . .ΨkΨ1 (8)

where k ≥ 1 is an integer and Ψ1, . . . , Ψk ∈ {Ψα/α ∈ A} with Ψ1 6= Ψi for all i,
2 ≤ i ≤ k.

The proof of this proposition will use Lemma 6.2 and the following presentation
proved in [16].
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Proposition 6.6. The monoid Episturm(A) with Exch(A) ∪ {Ψa, Ψa} as a set of
generators has the presentation given by Relations (5) to (7) and the following rela-
tions:

ExyΨa = ΨaExy when a 6∈ {x, y}, (9)

ExyΨa = ΨaExy when a 6∈ {x, y}, (10)

ΨaE1ΨaE2 . . .ΨaEkΨa = ΨaE1ΨaE2 . . .ΨaEkΨa (11)

where k ≥ 1 is an integer and E1, . . . , Ek are exchange morphisms such that
E1 . . . Ek(a) = a, and for each integer i, 2 ≤ i ≤ k, Ei . . . Ek(a) 6= a.

Proof of Proposition 6.5. We have already said that Relations (2) and (3) are valid.
By Proposition 6.6, Relations (5) to (7) are valid.

Particular cases of Lemma 6.2 hold when for each i, 1 ≤ i < k, fi = Ψa and
fk = Ψa, or when for each i, 1 ≤ i < k, fi = Ψa and fa = Ψa. Consequently
Relation (8) can be stated using Relation (5), Relations (2), (3) and (11). This proves
the validity or Relation (8) and so the validity of all relations in Proposition 6.5.

Using the same particular cases of Lemma 6.2, we deduce that Relation (11)
can be stated using Relation (5), and Relations (2), (3) and (8). Relations (9)
and (10) are particular cases of Relations (2) and (3). So all relations used in
Proposition 6.6 can be stated using Relations in Proposition 6.6. By Proposition 6.6,
any relations between elements of (Exch(A) ∪ {Ψα, Ψα/α ∈ A})∗ can be deduced
using Relations (5) to (7), and Relations (2), (3) and (8). �

We answer the previous question.

Proposition 6.7. Let A be an alphabet.

When Card(A) ≥ 2, the monoid of episturmian morphisms on A that are order-
preserving is not finitely generated.

When Card(A) ≥ 3, the monoid of episturmian morphisms on A that are Lyndon
morphisms is not finitely generated.

Proof. Recall that a (resp. b) is the least (resp. greatest) letter of A.

Let n ≥ 0 be an integer. Let fn = Ψn
b Ψa: fn(a) = bna, fn(b) = bn+1a, fn(α) =

bnαbna for α ∈ A\{a, b}. By Proposition 6.1, fn is order-preserving. Let g, h be
two order-preserving episturmian morphisms such that f = gh. By Proposition 6.1,
g, h ∈ {Ψα, Ψα/α ∈ A}∗. By Proposition 6.5, g = f and h = Id, or for an integer
i, 0 ≤ i ≤ n, g = Ψi

b and h = Ψn−i
b Ψa. We have Ψi

b(a) = bia and Ψi
b(b) = b.

Consequently since g is order-preserving, i = 0.

From what precedes, we deduce that for each n ≥ 0, fn must be an element of
any set of generators of the monoid of order-preserving episturmian morphisms: this
monoid is not finitely generated.

Similarly when Card(A) ≥ 3, given a letter α ∈ A\{a, b}, the morphisms Ψ
n

αΨa

for all n ≥ 0 can be used to state that the monoid of Lyndon episturmian monoids
is not finitely generated. �
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Let us give some remarks.
Note that a consequence of Propositions 6.4 and 6.5 is that the monoid of Stur-

mian morphisms (case Card(A) = 2) that are Lyndon morphisms is a free monoid
on two generators: no relation exists between Ψa and Ψb.

The monoid of episturmian morphisms is left and right cancellative [8, 16]. Con-
sequently for any alphabet A (Card(A) ≥ 2), the monoid of order-preserving epis-
turmian morphisms and the monoid of Lyndon episturmian morphisms are left and
right cancellative.

The monoid of episturmian morphisms is left and right unitary [16]. Lemma 5.2
implies that the monoid of order-preserving episturmian morphisms and the monoid
of Lyndon episturmian morphisms are left unitary.

When Card(A) = 2, Corollary 5.6 implies that the monoid of Sturmian mor-
phisms that preserve Lyndon words is right unitary.

For larger alphabet, this is not true. Indeed if α ∈ A\{a, b}, ΨαΨa and Ψa are
Lyndon morphisms, but Ψα is not a Lyndon morphisms.

When Card(A) ≥ 2, the monoid of order-preserving morphisms is not right
unitary. Indeed ΨbΨa and Ψa are order-preserving, but Ψb is not order-preserving.

To end this section, we give a more precise result than Proposition 6.1 when
Card(A) = 2.

Corollary 6.8. Let A = {a < b}. A Sturmian morphism is order-preserving if and
only if

1. it belongs to {Ψa, Ψb, Ψa, Ψb}
∗

2. it does not belong to Episturm(A)ΨbΨ
∗
a.

Proof. We have to prove that for a Sturmian morphism f , f(b) is a prefix of
f(ab) if and only if f ∈ Episturm(A)ΨbΨ

∗
a. First note for k ≥ 0, ΨbΨ

k
a(a) = ba,

ΨbΨ
k
a(b) = (ba)kb. Consequently for f ∈ Episturm(A)ΨbΨ

∗
a, f(b) is a prefix of f(ab).

Conversely let f be a Sturmian morphism such that f(b) = fΨb(b) is a prefix
of f(ab) = fΨb(a). There exists a word u such that fΨb(a) = fΨb(b)u. Let
g be the morphism defined by g(a) = u, g(b) = fΨb(b). We have fΨb = gΨb.
Since the monoid of Sturmian morphisms is right cancellative, g is Sturmian. By
Proposition 6.5, fΨb ∈ Episturm(A)ΨbΨ

∗
aΨb and so f ∈ Episturm(A)ΨbΨ

∗
a. �

7 About Fibonacci morphism

The aim of this section is to give examples of use of Lyndon morphisms (see Lem-
mas 7.2 and 7.3). We work on A2 = {a < b}. These examples concern one particular
Sturmian morphism which is the so-called Fibonacci morphism. This morphism,
denoted ϕ, is defined by ϕ(a) = ab, ϕ(b) = a. That is ϕ = ΨaE where E is the
exchange morphism defined by E(a) = b and E(b) = a.

The standard morphisms are the Sturmian morphisms that belong to {ϕ, E}∗.
As a corollary of Corollary 6.8, we have:

Corollary 7.1. A standard morphism is order-preserving if and only if it is a Lyn-
don morphism if and only if it belongs to (ϕE)∗.
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In [12], Melançon gives a decomposition in finite Lyndon words of particular
Sturmian words, called characteristic Sturmian words. When such a word is gener-
ated by a morphism, this morphism is standard. The previous result of Melançon
implies that any standard morphism that generates an infinite word cannot be a
Lyndon morphism. Corollary 7.1 is then without surprise since morphisms in (ϕE)∗

are the only standard morphisms that do not generate infinite words: (ϕE)n(a) = a,
(ϕE)n(b) = anb.

We give a new proof of the following result stated in [2].

Lemma 7.2. The word aϕω(a) is a Lyndon infinite word.

Proof. First observe that ϕϕ̃(a) = aab, ϕϕ̃(b) = ab. We prove by induction that
for all n ≥ 0,

aϕ2n(a) = (ϕϕ̃)n(a)a (12)

aϕ2n(ba) = (ϕϕ̃)n(ab)a (13)

This is immediate for n = 0 (remember f 0 = Id for any morphism f). Assume
Equations (12) and (13) hold for an integer n. Then aϕ2(n+1)(a) = aϕ2n(aba) =
(ϕϕ̃)n(aab)a = (ϕϕ̃)n+1(a)a. Moreover

aϕ2(n+1)(ba) = aϕ2n(ababa) = (ϕϕ̃)n(aabab)a = (ϕϕ̃)n+1(ab)a.
It follows from Equation (12) that

aϕω(a) = (ϕϕ̃)ω(a).

But by Proposition 4.2, the morphism ϕϕ̃ is a Lyndon morphism. So the word
(ϕϕ̃)ω(a) is a Lyndon infinite word �

Now we give a slightly new proof of the following result of Melançon.

Lemma 7.3. [11, 12] The factorization in Lyndon words of the Fibonacci word is

ϕω(a) = Πl≥0(ϕϕ̃)l(ab).

In particular, for l ≥ 0 (ϕϕ̃)l(ab) is a Lyndon word and (ϕϕ̃)l(ab) ≺ (ϕϕ̃)l+1(ab).

Proof. In the proof of Lemma 7.2, we have already proved that ϕϕ̃ is a Lyndon
morphism. So for l ≥ 0, (ϕϕ̃)l(ab) is a Lyndon word. For l ≥ 0, (ϕϕ̃)l(ab) is a prefix
of (ϕϕ̃)l+1(ab), so (ϕϕ̃)l(ab) ≺ (ϕϕ̃)l+1(ab).

To end the proof it is sufficient to state:

∀n ≥ 0, ϕ2n(a) =
[

Πn−1
l=0 (ϕϕ̃)i(ab)

]

a (14)

This equation is immediately true for n = 0. For n ≥ 1,

ϕ2n(a) = ϕ2(n−1)(ϕ2(a)) = ϕ2(n−1)(a)ϕ2(n−1)(ba).

Thus by induction
∀n ≥ 0, ϕ2n(a) = a

[

Πn−1
l=0 ϕ2i(ba)

]

(15)

Using Equation (13), we get Equation (14). �
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[26] Z.X. Wen and Z. Yiping. Some remarks on invertible substitutions on three
letter alphabet. Chin. Sci. Bulletin, 44(19):1755–1760, 1999.

[27] F. Wlazinski. A test-set for k-power-free binary morphisms. Theoretical Infor-
matics and Applications, 35:437–452, 2001.
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